ASIA unversity:Item 310904400/16749
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21700988      在线人数 : 395
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/16749


    题名: Prediction of small non-coding RNA in bacterial genomes using support vector machines
    作者: ;Chang, Tzu-Hao;Wu, Li-Ching;Lin, Jun-Hong;Huang, Hsien-Da;Liu, Baw-Jhiune;Cheng, Kuang-Fu;洪炯宗;Horng, Jorng-Tzong
    贡献者: 生物與醫學資訊學系
    关键词: Expert systems;Support vector machines;Machine learning;Bioinformatics;Non-coding RNA
    日期: 2010-08
    上传时间: 2012-11-23 09:16:34 (UTC+0)
    摘要: Small non-coding RNA genes have been shown to play important regulatory roles in a variety of cellular processes, but prediction of non-coding RNA genes is a great challenge, using either an experimental or a computational approach, due to the characteristics of sRNAs, which are that sRNAs are small in size, are not translated into proteins and show variable stability. Most known sRNAs have been identified in Escherichia coli and have been shown to be conserved in closely related organisms. We have developed an integrative approach that searches highly conserved intergenic regions among related bacterial genomes for combinations of characteristics that have been extracted from known E. coli sRNA genes. Support vector machines (SVM) were then used with these characteristics to predict novel sRNA genes.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    显示于类别:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML385检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈