English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21690006      Online Users : 428
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/16659


    Title: NagZ-dependent and NagZ-independent Mechanisms for the β-lactamases Expression in Stenotrophomonas maltophilia
    Authors: 胡若梅;Hu, Rouh-Mei
    Contributors: 生物與醫學資訊學系
    Date: 2012
    Issue Date: 2012-11-23 09:15:35 (UTC+0)
    Abstract: β-N-Acetylglucosaminidase (NagZ), encoded by the nagZ gene, is a critical enzyme for basal-level ampC derepression (ampC expression in the absence of β-lactam challenge) in ampD and dacB mutants of Pseudomonas aeruginosa. Three mutants with a phenotype of basal-level L1 and L2 β-lactamase derepression in Stenotrophomonas maltophilia have been reported, including KJΔDI (ampDI mutant), KJΔmrcA (mrcA mutant), and KJΔDIΔmrcA (ampDI and mrcA double mutant). In this study, nagZ of S. maltophilia was characterized, and its roles in basal-level β-lactamase derepression, induced β-lactamase activities, and β-lactam resistance of KJΔDI, KJΔmrcA, and KJΔDIΔmrcA were evaluated. Expression of the nagZ gene was constitutive and not regulated by AmpR, AmpDI, AmpN, AmpG, PBP1a, and NagZ. Introduction of ΔnagZ into KJΔDI nearly abolished basal-level derepressed β-lactamase activity; conversely, introduction of ΔnagZ into KJΔmrcA did not affect it. At least two activator ligands (ALs) are thus considered responsible for β-lactamase expression in the S. maltophilia system, specifically, the NagZ-dependent (AL1) and NagZ-independent (AL2) ligands responsible for the basal-level derepressed β-lactamase activities of KJΔDI and KJΔmrcA, respectively. The contributions of AL1 and AL2 to the induced β-lactamase activities may vary with the types of β-lactams. nagZ inactivation did not affect aztreonam-, cefoxitin-, and carbenicillin-induced β-lactamase activities, but it attenuated cefuroxime- and piperacillin-induced β-lactamase activities. Introduction of ΔnagZ into KJ, KJΔDI, KJΔmrcA, and KJΔDIΔmrcA did not significantly change the MICs of the β-lactams tested except that the MICs of cefuroxime and piperacillin moderately decreased in strains KJΔZ and KJΔDIΔZ (nagZ mutants).
    Relation: ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
    Appears in Collections:[生物資訊與醫學工程學系 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML536View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback