ASIA unversity:Item 310904400/16461
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21660149      線上人數 : 412
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/16461


    題名: Dilong: Role in Peripheral Nerve Regeneration
    作者: 黃志揚;HUANG, CHIH-YANG
    貢獻者: 生物科技學系
    日期: 2010-07
    上傳時間: 2012-11-23 09:13:24 (UTC+0)
    摘要: Dilong, also known as earthworm, has been widely used in traditional Chinese medicine (TCM) for thousands of years. Schwann cell migration and proliferation are critical for the regeneration of injured nerves and Schwann cells provide an essentially supportive role for neuron regeneration. However, the molecular mechanisms of migration and proliferation induced by dilongs in Schwann cells remain unclear. Here, we discuss the molecular mechanisms that includes (i) migration signaling, MAPKs (mitogen-activated protein kinases), mediated PAs and MMP2/9 pathway; (ii) survival and proliferative signaling, IGF-I (insulin-like growth factor-I)-mediated PI3K/Akt pathways and (iii) cell cycle regulation. Dilong stimulate RSC96 cell proliferation and migration. It can induce phosphorylation of ERK1/2 and p38, but not JNK, and activate the downstream signaling expression of PAs (plasminogen activators) and MMPs (matrix metalloproteinases) in a time-dependent manner. In addition, Dilong stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with chemical inhibitors (U0126 and SB203580), and small interfering ERK1/2 and p38 RNA, resulting in migration and uPA-related signal pathway inhibition. Dilong also induces the phosphorylation of IGF-I-mediated PI3K/Akt pathway, activates protein expression of PCNA (proliferating cell nuclear antigen) and cell cycle regulatory proteins (cyclin D1, cyclin E and cyclin A) in a time-dependent manner. In addition, it accelerates G(1)-phase progression with earlier S-phase entry and significant numbers of cells entered the S-phase. The siRNA-mediated knockdown of PI3K that significantly reduces PI3K protein expression levels, resulting in Bcl(2) survival factor reduction, revealing a marked blockage of G(1) to S transition in proliferating cells. These results reveal the unknown RSC96 cell migration and proliferation mechanism induced by dilong, which find use as a new medicine for nerve regeneration.
    關聯: ECAM Journal
    顯示於類別:[生物科技學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML244檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋