|
English
|
正體中文
|
简体中文
|
Items with full text/Total items : 94286/110023 (86%)
Visitors : 21658118
Online Users : 555
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
http://asiair.asia.edu.tw/ir/handle/310904400/16461
|
Title: | Dilong: Role in Peripheral Nerve Regeneration |
Authors: | 黃志揚;HUANG, CHIH-YANG |
Contributors: | 生物科技學系 |
Date: | 2010-07 |
Issue Date: | 2012-11-23 09:13:24 (UTC+0) |
Abstract: | Dilong, also known as earthworm, has been widely used in traditional Chinese medicine (TCM) for thousands of years. Schwann cell migration and proliferation are critical for the regeneration of injured nerves and Schwann cells provide an essentially supportive role for neuron regeneration. However, the molecular mechanisms of migration and proliferation induced by dilongs in Schwann cells remain unclear. Here, we discuss the molecular mechanisms that includes (i) migration signaling, MAPKs (mitogen-activated protein kinases), mediated PAs and MMP2/9 pathway; (ii) survival and proliferative signaling, IGF-I (insulin-like growth factor-I)-mediated PI3K/Akt pathways and (iii) cell cycle regulation. Dilong stimulate RSC96 cell proliferation and migration. It can induce phosphorylation of ERK1/2 and p38, but not JNK, and activate the downstream signaling expression of PAs (plasminogen activators) and MMPs (matrix metalloproteinases) in a time-dependent manner. In addition, Dilong stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with chemical inhibitors (U0126 and SB203580), and small interfering ERK1/2 and p38 RNA, resulting in migration and uPA-related signal pathway inhibition. Dilong also induces the phosphorylation of IGF-I-mediated PI3K/Akt pathway, activates protein expression of PCNA (proliferating cell nuclear antigen) and cell cycle regulatory proteins (cyclin D1, cyclin E and cyclin A) in a time-dependent manner. In addition, it accelerates G(1)-phase progression with earlier S-phase entry and significant numbers of cells entered the S-phase. The siRNA-mediated knockdown of PI3K that significantly reduces PI3K protein expression levels, resulting in Bcl(2) survival factor reduction, revealing a marked blockage of G(1) to S transition in proliferating cells. These results reveal the unknown RSC96 cell migration and proliferation mechanism induced by dilong, which find use as a new medicine for nerve regeneration. |
Relation: | ECAM Journal |
Appears in Collections: | [生物科技學系] 期刊論文
|
Files in This Item:
File |
Description |
Size | Format | |
index.html | | 0Kb | HTML | 241 | View/Open |
|
All items in ASIAIR are protected by copyright, with all rights reserved.
|