English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21656515      Online Users : 436
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/16201


    Title: Oral hydroxycitrate supplementation enhances glycogen synthesis in exercised human skeletal muscle
    Authors: 李信達;Lee, Shin-Da;黃志揚;HUANG, CHIH-YANG
    Contributors: 生物科技學系
    Keywords: Insulin resistance;Ergogenic aids;GLUT4;FAT/CD36;Hydroxycitrate
    Date: 2011
    Issue Date: 2012-11-23 09:09:51 (UTC+0)
    Abstract: Glycogen stored in skeletal muscle is the main fuel for endurance exercise. The present study examined the effects of oral hydroxycitrate (HCA) supplementation on post-meal glycogen synthesis in exercised human skeletal muscle. Eight healthy male volunteers (aged 22·0 (se 0·3) years) completed a 60-min cycling exercise at 70-75 % \dot {>V}O_{2\hairsp max} and received HCA or placebo in a crossover design repeated after a 7 d washout period. They consumed 500 mg HCA or placebo with a high-carbohydrate meal (2 g carbohydrate/kg body weight, 80 % carbohydrate, 8 % fat, 12 % protein) for a 3-h post-exercise recovery. Muscle biopsy samples were obtained from vastus lateralis immediately and 3 h after the exercise. We found that HCA supplementation significantly lowered post-meal insulin response with similar glucose level compared to placebo. The rate of glycogen synthesis with the HCA meal was approximately onefold higher than that with the placebo meal. In contrast, GLUT4 protein level after HCA supplementation was significantly decreased below the placebo level, whereas expression of fatty acid translocase (FAT)/CD36 mRNA was significantly increased above the placebo level. Furthermore, HCA supplementation significantly increased energy reliance on fat oxidation, estimated by the gaseous exchange method. However, no differences were found in circulating NEFA and glycerol levels with the HCA meal compared with the placebo meal. The present study reports the first evidence that HCA supplementation enhanced glycogen synthesis rate in exercised human skeletal muscle and improved post-meal insulin sensitivity. [PUBLICATION ABSTRACT]
    Relation: BRITISH JOURNAL OF NUTRITION
    Appears in Collections:[生物科技學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML439View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback