ASIA unversity:Item 310904400/16059
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21701190      Online Users : 534
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/16059


    Title: Iodide oxidation and iodine reduction by horseradish peroxodase in the presence of EDTA: the superoxide effect.
    Authors: 張竣維;Hebron, C.Chang
    Contributors: 生物科技學系
    Date: 2001
    Issue Date: 2012-11-23 09:08:04 (UTC+0)
    Abstract: Ethylenediaminetetraacetic acid (EDTA) is an inhibitor of iodide (I-) oxidation that is catalyzed by horseradish peroxidase (HRP). HRP-mediated iodine (I2) reduction and triiodide (I3+) disappearance occur in the presence of this inhibitor. It is interesting that in the presence of EDTA, HRP produces superoxide radical, a reactive oxygen species that is required for iodine reduction. Substitution of potassium superoxide (KO2) or a biochemical superoxide generating system (xanthine/xanthine oxidase) for HRP and H2O2 in the reaction mixture also can reduce iodine to iodide. Thus, iodine reduction mediated by HRP occurs because HRP is able to mediate the formation of superoxide in the presence of EDTA and H2O2. Although superoxide is able to mediate iodine reduction directly, other competing reactions appear to be more important. For example, high concentrations (mM range) of EDTA are required for efficient iodine reduction in this system. Under such conditions, the concentration (microM range) of contaminating EDTA-Fe(III) becomes catalytically important. In the presence of superoxide, EDTA-Fe(III) is reduced to EDTA-Fe(II), which is able to reduce iodine and form triiodide rapidly. Also of importance is the fact that EDTA-Fe(II) reacts with hydrogen peroxide to form hydroxyl radical. Hydroxyl radical involvement is supported by the fact that a wide variety of hydroxyl radical (OH) scavengers can inhibit HRP dependent iodine reduction in the presence of EDTA and hydrogen peroxide.
    Relation: JOURNAL OF BIOMEDICAL SCIENCE;25(2):82-9.
    Appears in Collections:[Department of Biotechnology] Journal Article

    Files in This Item:

    There are no files associated with this item.



    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback