ASIA unversity:Item 310904400/115600
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21701176      線上人數 : 526
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 管理學院 > 經營管理學系  > 期刊論文 >  Item 310904400/115600


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115600


    題名: Topology-Aware Neural Model for Highly Accurate QoS Prediction
    作者: Li, Jiahui;Li, Jiahui;Wu, Hao;Wu, Hao;Chen, Jiapei;Chen, Jiapei;He, Qiang;He, Qiang;許慶賢;Hsu, Ching-Hsien
    貢獻者: 資訊電機學院資訊工程學系
    日期: 2022-07-01
    上傳時間: 2023-03-29 02:51:01 (UTC+0)
    出版者: 亞洲大學
    摘要: With the widespread deployment of various cloud computing and service-oriented systems, there is a rapidly increasing demand for collaborative quality-of-service (QoS) prediction. Existing QoS prediction methods have made great progress in modeling users and services as well as exploiting contexts of service invocations. However, they ignore the completion of service requests/responses relies on the underlying network topology and the complex interactions between Autonomous Systems. To tackle this challenge, we propose a topology-aware neural (TAN) model for collaborative QoS prediction. In the TAN model, the features of users, services, and intermediate nodes on the communication path are projected to a shared latent space as input features. To jointly characterize the invocation process, the path features and end-cross features are captured respectively through an explicit path modeling layer and an implicit cross-modeling layer. After that, a gating layer fuses and transmits these features to the prediction layer for estimating unknown QoS values. In this way, TAN provides a flexible framework that can comprehensively capture the invocation context for making accurate QoS prediction. Experimental results on two real-world datasets demonstrate that TAN significantly outperforms state-of-the-art methods on the tasks of response time, throughput, and reliability prediction. Also, TAN shows better extensibility of using auxiliary information.
    顯示於類別:[經營管理學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML88檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋