ASIA unversity:Item 310904400/115600
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21699001      在线人数 : 872
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 管理學院 > 經營管理學系  > 期刊論文 >  Item 310904400/115600


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115600


    题名: Topology-Aware Neural Model for Highly Accurate QoS Prediction
    作者: Li, Jiahui;Li, Jiahui;Wu, Hao;Wu, Hao;Chen, Jiapei;Chen, Jiapei;He, Qiang;He, Qiang;許慶賢;Hsu, Ching-Hsien
    贡献者: 資訊電機學院資訊工程學系
    日期: 2022-07-01
    上传时间: 2023-03-29 02:51:01 (UTC+0)
    出版者: 亞洲大學
    摘要: With the widespread deployment of various cloud computing and service-oriented systems, there is a rapidly increasing demand for collaborative quality-of-service (QoS) prediction. Existing QoS prediction methods have made great progress in modeling users and services as well as exploiting contexts of service invocations. However, they ignore the completion of service requests/responses relies on the underlying network topology and the complex interactions between Autonomous Systems. To tackle this challenge, we propose a topology-aware neural (TAN) model for collaborative QoS prediction. In the TAN model, the features of users, services, and intermediate nodes on the communication path are projected to a shared latent space as input features. To jointly characterize the invocation process, the path features and end-cross features are captured respectively through an explicit path modeling layer and an implicit cross-modeling layer. After that, a gating layer fuses and transmits these features to the prediction layer for estimating unknown QoS values. In this way, TAN provides a flexible framework that can comprehensively capture the invocation context for making accurate QoS prediction. Experimental results on two real-world datasets demonstrate that TAN significantly outperforms state-of-the-art methods on the tasks of response time, throughput, and reliability prediction. Also, TAN shows better extensibility of using auxiliary information.
    显示于类别:[經營管理學系 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML87检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈