ASIA unversity:Item 310904400/115581
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21672989      在线人数 : 530
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 管理學院 > 經營管理學系  > 期刊論文 >  Item 310904400/115581


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115581


    题名: Real-Time Traffic Speed Estimation for Smart Cities with Spatial Temporal Data: A Gated Graph Attention Network Approach
    作者: Nie, Xin;Nie, Xin;Pen, Jialiang;Peng, Jialiang;Wu, Yi;Wu, Yi;Bhoosha, Brij;Gupta, Brij Bhooshan;Abd, Ahmed A.;Ahmed, Ahmed A. Abd El-Latif
    贡献者: 資訊電機學院資訊工程學系
    日期: 2022-03-01
    上传时间: 2023-03-29 02:49:56 (UTC+0)
    出版者: 亞洲大學
    摘要: Moving vehicles interact with IoT devices deployed in cities and establish social relationships to provide proactive and intelligent services for smart cities. For example, big-data-driven accurate and timely traffic speed prediction systems play an important role in empowering Intelligent Transportation Systems (ITS) in smart cities. The reason is that it is the foundation of modern traffic management and traffic control. Most of the existing advanced traffic speed prediction models are Spatial-Temporal hybrid models. They improve the predicting accuracy by leveraging Graph Convolutional Network (GCN) and Recurrent Neural Network (RNN) to extract spatial and temporal features from the traffic speed data, respectively. However, these models have complex structures and high computational costs. To improve the accuracy of prediction and reduce the cost of model training, we propose a hybrid model, Spatial-Temporal Gated Graph Attention network (ST-GGAN), based on Graph Attention mechanism (GAT) and Gated Recurrent Unit (GRU). Such a method has a simpler structure, lower computational costs, and higher predicting accuracy. The experimental results show that our model's performance is better than the existing advanced models on a real-world dataset.
    显示于类别:[經營管理學系 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML220检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈