ASIA unversity:Item 310904400/115574
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21673162      線上人數 : 683
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 管理學院 > 經營管理學系  > 期刊論文 >  Item 310904400/115574


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115574


    題名: Phishing Website Detection With Semantic Features Based on Machine Learning Classifiers: A Comparative Study
    作者: Almoma, Ammar;Almomani, Ammar;Ala, Mohammad;Alauthman, Mohammad;Sh, Mohd Taib;Shatnawi, Mohd Taib;Alw, Mohammed;Alweshah, Mohammed;Alrosan, Ayat;Alrosan, Ayat;Alomo, Waleed;Alomoush, Waleed;Bhoosha, Brij;Gupta, Brij Bhooshan
    貢獻者: 資訊電機學院資訊工程學系
    日期: 2022-NA
    上傳時間: 2023-03-29 02:49:42 (UTC+0)
    出版者: 亞洲大學
    摘要: The phishing attack is one of the main cybersecurity threats in web phishing and spear phishing. Phishing websites continue to be a problem. One of the main contributions to our study was working and extracting the URL & Domain Identity feature, Abnormal Features, HTML and JavaScript Features, and Domain Features as semantic features to detect phishing websites, which makes the process of classification using those semantic features, more controllable and more effective. The current study used machine learning model algorithms to detect phishing websites, and comparisons were made. We have used 16 machine learning models adopted with 10 semantic features that represent the most effective features for the detection of phishing webpages extracted from two datasets. The GradientBoostingClassifier and RandomForestClassifier had the best accuracy based on the comparison results (i.e., about 97%). In contrast, GaussianNB and the stochastic gradient descent (SGD) classifier represent the lowest accuracy results; 84% and 81% respectively, in comparison with other classifiers.
    顯示於類別:[經營管理學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML226檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋