ASIA unversity:Item 310904400/115574
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21670886      在线人数 : 467
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 管理學院 > 經營管理學系  > 期刊論文 >  Item 310904400/115574


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115574


    题名: Phishing Website Detection With Semantic Features Based on Machine Learning Classifiers: A Comparative Study
    作者: Almoma, Ammar;Almomani, Ammar;Ala, Mohammad;Alauthman, Mohammad;Sh, Mohd Taib;Shatnawi, Mohd Taib;Alw, Mohammed;Alweshah, Mohammed;Alrosan, Ayat;Alrosan, Ayat;Alomo, Waleed;Alomoush, Waleed;Bhoosha, Brij;Gupta, Brij Bhooshan
    贡献者: 資訊電機學院資訊工程學系
    日期: 2022-NA
    上传时间: 2023-03-29 02:49:42 (UTC+0)
    出版者: 亞洲大學
    摘要: The phishing attack is one of the main cybersecurity threats in web phishing and spear phishing. Phishing websites continue to be a problem. One of the main contributions to our study was working and extracting the URL & Domain Identity feature, Abnormal Features, HTML and JavaScript Features, and Domain Features as semantic features to detect phishing websites, which makes the process of classification using those semantic features, more controllable and more effective. The current study used machine learning model algorithms to detect phishing websites, and comparisons were made. We have used 16 machine learning models adopted with 10 semantic features that represent the most effective features for the detection of phishing webpages extracted from two datasets. The GradientBoostingClassifier and RandomForestClassifier had the best accuracy based on the comparison results (i.e., about 97%). In contrast, GaussianNB and the stochastic gradient descent (SGD) classifier represent the lowest accuracy results; 84% and 81% respectively, in comparison with other classifiers.
    显示于类别:[經營管理學系 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML221检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈