ASIA unversity:Item 310904400/115571
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21671591      線上人數 : 1119
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 管理學院 > 經營管理學系  > 期刊論文 >  Item 310904400/115571


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115571


    題名: PCNNCEC: Efficient and Privacy-Preserving Convolutional Neural Network Inference Based on Cloud-Edge-Client Collaboration
    作者: Wang, Jing;Wang, Jing;He, Debiao;He, Debiao;Cast, Aniello;Castiglione, Aniello;Bhoosha, Brij;Gupta, Brij Bhooshan;Ka, Marimuthu;Marimuthu Karuppiah;Wu, Libing;Wu, Libing
    貢獻者: 資訊電機學院資訊工程學系
    關鍵詞: Protocols , Computational modeling , Industrial Internet of Things , Cryptography , Servers , Convolutional neural networks , Machine learning
    日期: 2022-05-01
    上傳時間: 2023-03-29 02:49:36 (UTC+0)
    出版者: 亞洲大學
    摘要: Deploying convolutional neural network (CNN) inference on resource-constrained devices remains a remarkable challenge for industrial Internet of Things (IIoT). Although the cloud computing shows great promise in machine learning training and prediction, outsourcing data to remote cloud always incurs privacy risk and high latency. Therefore, we design a new framework for efficient and privacy-preserving CNN inference based on cloud-edge-client collaboration (namedPCNNCEC). In PCNNCEC, the model of cloud and the data of client in IIoT are split into two shares and sent to two non-colluded edge servers. By applying the arithmetic secret sharing and pre-computation of beaver's triplets, the two edge servers can jointly calculate the predicting results without learning anything about the model and data. To speed up the pre-computation of offline phase and not sacrifice security, the task of triplets generation is delegated to the cloud, so that the edge servers do not require frequent interactions to generate triplets themselves or introducing additional trusted party. The experimental results show the proposed private comparison protocol achieves a better tradeoff between low latency and high throughput, when it is compared with garbled circuit based protocols and other secret sharing based protocols. Additionally, the benchmarks conducted on realistic MNIST and CIFAR-10 datasets demonstrate that PCNNCEC costs less communication and runtime than two recently related schemes under the same security level.
    顯示於類別:[經營管理學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML97檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋