ASIA unversity:Item 310904400/115551
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21719511      線上人數 : 168
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/115551


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115551


    題名: Fog-Enabled Secure and Efficient Fine-Grained Searchable Data Sharing and Management Scheme for IoT-Based Healthcare Systems
    作者: Mamta;Mamta;Bhoosha, Brij;Gupta, Brij Bhooshan;Miltiadis, D.;Lytras, Miltiadis D.
    貢獻者: 資訊電機學院資訊工程學系
    日期: 2022-02-01
    上傳時間: 2023-03-29 02:47:25 (UTC+0)
    出版者: 亞洲大學
    摘要: In recent times, fog computing has emerged as a helpful extension of cloud computing. It can efficiently handle the prevalent issue of managing silos of data generated by today's digital healthcare services. Moreover, the application of the Internet of Things (IoT) in the development of smart healthcare systems further adds tons of data tirelessly to these silos, thus making the cloud congested. To manage such continuously growing data, the concept of adding a fog layer between the cloud and the end-users (EUs) proved to be beneficial. These intermediary fog nodes (FNs) can handle and store data, and thus facilitate the cloud and alleviate the burden from the EUs. Most of the existing search schemes for encrypted data have been developed for the cloud platform and ignored this helpful extension, which can improve the scheme's efficiency by delegating most of the heavy computations to the intermediary FNs. In this article, a fine-grained searchable data sharing scheme has been proposed using the fog computing platform. The resulting scheme is efficient and lightweight because the FN facilitates EUs by performing computationally intensive tasks on their behalf. A significant reduction in storage and computational cost has been achieved by the proposed scheme at the data owner's end, representing the resource-constrained IoT devices. The storage cost has been reduced to two source group elements, and the computational cost has been reduced to three exponent operations in the source group and one hash operation. Furthermore, the proposed scheme is secure against the selectively chosen keyword attack in the generic bilinear group model.
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML125檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋