ASIA unversity:Item 310904400/115537
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21696439      在线人数 : 908
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/115537


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115537


    题名: Boosting-based DDoS Detection in Internet of Things Systems
    作者: Cviti?, Ivan;Cviti?, Ivan;Perak, Dragan;Perakovic, Dragan;Bhoosha, Brij;GUPTA, DR. BRIJ BHOOSHAN;Ra, Kim-Kwang;Choo, Kim-Kwang Raymond
    贡献者: 資訊電機學院資訊工程學系
    日期: 2022-02-01
    上传时间: 2023-03-29 02:32:27 (UTC+0)
    出版者: 亞洲大學
    摘要: Distributed Denial-of-Service (DDoS) attacks remain challenging to mitigate in the existing systems, including in-home networks that comprise different Internet of Things (IoT) devices. In this article, we present a DDoS traffic detection model that uses a boosting method of logistic model trees for different IoT device classes. Specifically, a different version of the model will be generated and applied for each device class since the characteristics of the network traffic from each device class may have subtle variation(s). As a case study, we explain how devices in a typical smart home environment can be categorized into four different classes (and in our context, Class 1—very high level of traffic predictability, Class 2—high level of traffic predictability, Class 3—medium level of traffic predictability, and Class 4—low level of traffic predictability). Findings from our evaluations show that the accuracy of our proposed approach is between 99.92% and 99.99% for these four device classes. In other words, we demonstrate that we can use device classes to help us more effectively detect DDoS traffic.
    显示于类别:[資訊工程學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML48检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈