ASIA unversity:Item 310904400/115525
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21658165      線上人數 : 460
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/115525


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115525


    題名: AlexNet Convolutional Neural Network for Disease Detection and Classification of Tomato Leaf
    作者: 陳興忠;Chen, Hsing-Chung;Mulyo, Agung;Widodo, Agung Mulyo;Wisnu, Andika;Wisnujati, Andika;Raham, Mosiur;Rahaman, Mosiur;Jerry, Chun-W;Lin, Jerry Chun-Wei;Chen, Liukui;Chen, Liukui;We, Chien-Erh;Weng, Chien-Erh
    貢獻者: 資訊電機學院資訊工程學系
    關鍵詞: AlexNet modification;tomato diseases;leaf image;AI
    日期: 2022-03-01
    上傳時間: 2023-03-29 02:31:49 (UTC+0)
    出版者: 亞洲大學
    摘要: With limited retrieval of reserves and restricted capability in plant pathology, automation of processes becomes essential. All over the world, farmers are struggling to prevent various harm from bacteria or pathogens such as viruses, fungi, worms, protozoa, and insects. Deep learning is currently widely used across a wide range of applications, including desktop, web, and mobile. In this study, the authors attempt to implement the function of AlexNet modification architecture-based CNN on the Android platform to predict tomato diseases based on leaf image. A dataset with of 18,345 training data and 4,585 testing data was used to create the predictive model. The information is separated into ten labels for tomato leaf diseases, each with 64 × 64 RGB pixels. The best model using the Adam optimizer with a realizing rate of 0.0005, the number of epochs 75, batch size 128, and an uncompromising cross-entropy loss function, has a high model accuracy with an average of 98%, a strictness rate of 0.98, a recall value of 0.99, and an F1-count of 0.98 with a loss of 0.1331, so that the classification results are good and very precise.
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML74檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋