|
English
|
正體中文
|
简体中文
|
Items with full text/Total items : 94286/110023 (86%)
Visitors : 21700179
Online Users : 585
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
http://asiair.asia.edu.tw/ir/handle/310904400/115444
|
Title: | Predicting Anticancer Drug Resistance Mediated by Mutations |
Authors: | 林玉鳳;Lin, Yu-Feng;Liu, Jia-Jun;Chang, Yu-Jen;Chang, Yu-Jen;Chin-Sheng, Y;Yu, Chin-Sheng;Yi, Wei;Yi, Wei;Hsien-Yuan, L;Lane, Hsien-Yuan;Lu, Chih-Hao;Lu, Chih-Hao |
Contributors: | 醫學暨健康學院醫學檢驗暨生物技術學系 |
Keywords: | cancer drug;drug resistance;feature selection;machine learning;personalized therapeutics;protein structure;single amino acid variation. |
Date: | 2022-01-01 |
Issue Date: | 2023-03-29 02:23:39 (UTC+0) |
Publisher: | 亞洲大學 |
Abstract: | Cancer drug resistance presents a challenge for precision medicine. Drug-resistant mutations are always emerging. In this study, we explored the relationship between drug-resistant mutations and drug resistance from the perspective of protein structure. By combining data from previously identified drug-resistant mutations and information of protein structure and function, we used machine learning-based methods to build models to predict cancer drug resistance mutations. The performance of our combined model achieved an accuracy of 86%, a Matthews correlation coefficient score of 0.57, and an F1 score of 0.66. We have constructed a fast, reliable method that predicts and investigates cancer drug resistance in a protein structure. Nonetheless, more information is needed concerning drug resistance and, in particular, clarification is needed about the relationships between the drug and the drug resistance mutations in proteins. Highly accurate predictions regarding drug resistance mutations can be helpful for developing new strategies with personalized cancer treatments. Our novel concept, which combines protein structure information, has the potential to elucidate physiological mechanisms of cancer drug resistance. |
Appears in Collections: | [生物科技學系] 期刊論文
|
Files in This Item:
File |
Description |
Size | Format | |
index.html | | 0Kb | HTML | 79 | View/Open |
|
All items in ASIAIR are protected by copyright, with all rights reserved.
|