ASIA unversity:Item 310904400/115287
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21692440      在线人数 : 842
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115287


    题名: Deep Learning in Left and Right Footprint Image Detection Based on Plantar Pressure
    作者: Ardhia, Peter;Ardhianto, Peter;Liau, Ben-Yi;Liau, Ben-Yi;Jan, Yih-Kuen;Jan, Yih-Kuen;Tsa, Jen-Yung;Tsai, Jen-Yung;Akh, Fityanul;Akhyar, Fityanul;Li, Chih-Yang;Lin, Chih-Yang;Bagus, Raden;Subiakto, Raden Bagus Reinaldy;龍希文;Lung, Chi-Wen
    贡献者: 創意設計學院創意商品設計學系
    关键词: cerebral palsy;YOLO;object detection;foot progression angle;complex footprints
    日期: 2022-09-01
    上传时间: 2023-03-29 01:27:29 (UTC+0)
    出版者: 亞洲大學
    摘要: People with cerebral palsy (CP) suffer primarily from lower-limb impairments. These impairments contribute to the abnormal performance of functional activities and ambulation. Footprints, such as plantar pressure images, are usually used to assess functional performance in people with spastic CP. Detecting left and right feet based on footprints in people with CP is a challenge due to abnormal foot progression angle and abnormal footprint patterns. Identifying left and right foot profiles in people with CP is essential to provide information on the foot orthosis, walking problems, index gait patterns, and determination of the dominant limb. Deep learning with object detection can localize and classify the object more precisely on the abnormal foot progression angle and complex footprints associated with spastic CP. This study proposes a new object detection model to auto-determine left and right footprints. The footprint images successfully represented the left and right feet with high accuracy in object detection. YOLOv4 more successfully detected the left and right feet using footprint images compared to other object detection models. YOLOv4 reached over 99.00% in various metric performances. Furthermore, detection of the right foot (majority of people’s dominant leg) was more accurate than that of the left foot (majority of people’s non-dominant leg) in different object detection models.
    显示于类别:[創意商品設計學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML155检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈