ASIA unversity:Item 310904400/115094
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21691847      在线人数 : 570
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 行政單位 > 研究發展處 > 期刊論文 >  Item 310904400/115094


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115094


    题名: A novel intelligent deep learning predictive model for meteorological drought forecasting
    作者: Danandeh, Ali;Mehr, Ali Danandeh;Rikhteh, Amir;Ghiasi, Amir Rikhtehgar;Mundhe, Zaher;Yaseen, Zaher Mundher;Sor, Ali Unal;Sorman, Ali Unal;Abuali, Laith;Abualigah, Laith
    贡献者: 研究發展處學術發展組
    日期: 2022-01-01
    上传时间: 2023-03-28 02:21:03 (UTC+0)
    出版者: 亞洲大學
    摘要: The advancements of artificial intelligence models have demonstrated notable progress in the field of hydrological forecasting. However, predictions of extreme climate events are still a challenging task. This paper presents the development and verification procedures of a new hybrid intelligent model, namely convolutional long short-term memory (CNN-LSTM) for short-term meteorological drought forecasting. The CNN-LSTM conjugates the long short-term memory (LSTM) network with a convolutional neural network (CNN) as the feature extractor. The new model was implemented to forecast multi-temporal drought indices, three-month and six-month standardized precipitation evapotranspiration (SPEI-3 and SPEI-6), at two case study points located in Ankara province, Turkey. Statistical accuracy measures, graphical inspections, and comparison with benchmark models, including genetic programming, artificial neural networks, LSTM, and CNN, were considered to verify the efficiency of the proposed model. The results showed that the CNN-LSTM outperformed all the benchmarks. In quantitative visualization, it attained minimal root mean square error (RMSE?=?0.75 and 0.43) for the SPEI-3 and SPEI-6 at Beypazari station and (RMSE?=?0.73 and 0.53) for the SPEI-3 and SPEI-6 at Nallihan station over the testing periods. The proposed hybrid model was a promising and reliable modeling approach for the SPEI prediction and increased our knowledge about meteorological drought patterns.
    显示于类别:[研究發展處] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML181检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈