ASIA unversity:Item 310904400/115068
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21656058      線上人數 : 523
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115068


    題名: Biomechanical Analyses of Porous Designs of 3D-Printed Titanium Implant for Mandibular Segmental Osteotomy Defects
    作者: Shen, Yen-Wen;Shen, Yen-Wen;Ts, Yuen-Shan;Tsai, Yuen-Shan;許瑞廷;Hsu, Jui-Ting;謝明佑;Shie, Ming-You;黃恆立;Huang, Heng Li;Fuh, Lih-Jyh;Fuh, Lih-Jyh
    貢獻者: 資訊電機學院生物資訊與醫學工程學系
    關鍵詞: mandibular segmental defect;3D-printed porous titanium mandibular implant;pore shape;pore size;finite element analysis;strain gauge in vitro experiment;stress;strain
    日期: 2022-01-01
    上傳時間: 2023-03-28 02:14:13 (UTC+0)
    出版者: 亞洲大學
    摘要: Clinically, a reconstruction plate can be used for the facial repair of patients with mandibular segmental defects, but it cannot restore their chewing function. The main purpose of this research is to design a new three-dimensionally (3D) printed porous titanium mandibular implant with both facial restoration and oral chewing function reconstruction. Its biomechanical properties were examined using both finite element analysis (FEA) and in vitro experiments. Cone beam computed tomography images of the mandible of a patient with oral cancer were selected as a reference to create 3D computational models of the bone and of the 3D-printed porous implant. The pores of the porous implant were circles or hexagons of 1 or 2 mm in size. A nonporous implant was fabricated as a control model. For the FEA, two chewing modes, namely right unilateral molar clench and right group function, were set as loading conditions. Regarding the boundary condition, the displacement of both condyles was fixed in all directions. For the in vitro experiments, an occlusal force (100 N) was applied to the abutment of the 3D-printed mandibular implants with and without porous designs as the loading condition. The porous mandibular implants withstood higher stress and strain than the nonporous mandibular implant, but all stress values were lower than the yield strength of Ti-6Al-4V (800 MPa). The strain value of the bone surrounding the mandibular implant was affected not only by the shape and size of the pores but also by the chewing mode. According to Frost’s mechanostat theory of bone, higher bone strain under the porous implants might help maintain or improve bone quality and bone strength. The findings of this study serve as a biomechanical reference for the design of 3D-printed titanium mandibular implants and require confirmation through clinical investigations.
    顯示於類別:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML277檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋