ASIA unversity:Item 310904400/115000
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21691941      在线人数 : 629
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/115000


    题名: A Hand-Modeled Feature Extraction-Based Learning Network to Detect Grasps Using sEMG Signal
    作者: Baygi, Mehmet;Baygin, Mehmet;Datta, Prabal;Barua, Prabal Datta;Dogan, Sengul;Dogan, Sengul;Tunce, Turker;Tuncer, Turker;Key, Sefa;Key, Sefa;Rajendra, U.;Acharya, U. Rajendra;Che, Kang Hao;Cheong, Kang Hao
    贡献者: 資訊電機學院生物資訊與醫學工程學系
    关键词: Long-term care;metaverse;Taiwan
    frustum pattern;Frustum154;sEMG signal classification;grasp detection
    日期: 2022-02-01
    上传时间: 2023-03-28 01:57:06 (UTC+0)
    出版者: 亞洲大學
    摘要: Recently, deep models have been very popular because they achieve excellent performance with many classification problems. Deep networks have high computational complexities and require specific hardware. To overcome this problem (without decreasing classification ability), a hand-modeled feature selection method is proposed in this paper. A new shape-based local feature extractor is presented which uses the geometric shape of the frustum. By using a frustum pattern, textural features are generated. Moreover, statistical features have been extracted in this model. Textures and statistics features are fused, and a hybrid feature extraction phase is obtained; these features are low-level. To generate high level features, tunable Q factor wavelet transform (TQWT) is used. The presented hybrid feature generator creates 154 feature vectors; hence, it is named Frustum154. In the multilevel feature creation phase, this model can select the appropriate feature vectors automatically and create the final feature vector by merging the appropriate feature vectors. Iterative neighborhood component analysis (INCA) chooses the best feature vector, and shallow classifiers are then used. Frustum154 has been tested on three basic hand-movement sEMG datasets. Hand-movement sEMG datasets are commonly used in biomedical engineering, but there are some problems in this area. The presented models generally required one dataset to achieve high classification ability. In this work, three sEMG datasets have been used to test the performance of Frustum154. The presented model is self-organized and selects the most informative subbands and features automatically. It achieved 98.89%, 94.94%, and 95.30% classification accuracies using shallow classifiers, indicating that Frustum154 can improve classification accuracy.
    显示于类别:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML257检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈