ASIA unversity:Item 310904400/114939
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21654211      在线人数 : 591
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/114939


    题名: De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update
    作者: Lin, E;Lin, E;CH, Lin;CH, Lin;藍先元;Lane, Hsien Yuan
    贡献者: 醫學暨健康學院心理學系
    关键词: artificial intelligence; computer-aided drug design and discovery; deep artificial neural networks deep learning; de novo peptide design; de novo protein design; generative adversarial networks; generative chemistry ;generative methods; machine learning
    日期: 2022-02-01
    上传时间: 2023-03-28 01:08:25 (UTC+0)
    出版者: 亞洲大學
    摘要: Nowadays, machine learning and deep learning approaches are widely utilized for generative chemistry and computer-aided drug design and discovery such as de novo peptide and protein design, where target-specific peptide-based/protein-based therapeutics have been suggested to cause fewer adverse effects than the traditional small-molecule drugs. In light of current advancements in deep learning techniques, generative adversarial network (GAN) algorithms are being leveraged to a wide variety of applications in the process of generative chemistry and computer-aided drug design and discovery. In this review, we focus on the up-to-date developments for de novo peptide and protein design research using GAN algorithms in the interdisciplinary fields of generative chemistry, machine learning, deep learning, and computer-aided drug design and discovery. First, we present various studies that investigate GAN algorithms to fulfill the task of de novo peptide and protein design in the drug development pipeline. In addition, we summarize the drawbacks with respect to the previous studies in de novo peptide and protein design using GAN algorithms. Finally, we depict a discussion of open challenges and emerging problems for future research.
    显示于类别:[外國語文學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML74检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈