Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cell that is investigated in bone tissue engineering (BTE). Osteoblasts are the main cells responsible for bone formation in vivo and directing ADSCs to form osteoblasts through osteogenesis is a research topic in BTE. In addition to the osteogenesis of ADSCs into osteoblasts, the crosstalk of ADSCs with osteoblasts through the secretion of extracellular vesicles (EVs) may also contribute to bone formation in ADSC-based BTE. We investigated the effect of ADSC-secreted EVs (ADSC-EVs) on osteoblast function. ADSC-EVs (size ? 1000 nm) were isolated from the culture supernatant of ADSCs through ultracentrifugation. The ADSC-EVs were observed to be spherical under a transmission electron microscope. The ADSC-EVs were positive for CD9, CD81, and Alix, but β-actin was not detected. ADSC-EV treatment did not change survival but did increase osteoblast proliferation and activity. The 48 most abundant known microRNAs (miRNAs) identified within the ADSC-EVs were selected and then subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The GO analysis revealed that these miRNAs are highly relevant to skeletal system morphogenesis and bone development. The KEGG analysis indicated that these miRNAs may regulate osteoblast function through autophagy or the mitogen-activated protein kinase or Ras-related protein 1 signaling pathway. These results suggest that ADSC-EVs enhance osteoblast function and can contribute to bone regeneration in ADSC-based BTE.