English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21695421      Online Users : 617
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 資訊學院 > 資訊工程學系 > 博碩士論文 >  Item 310904400/113839


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/113839


    Title: 集成深度學習的自動光學檢測研究
    Research on Ensemble Deep Learning for Automatic Optical Inspection
    Authors: 陳麒安
    CHEN, CHI-AN
    Contributors: 資訊工程學系
    Keywords: EfficientNets;遷移式學習;深度學習;自動化光學檢測;集成學習
    Deep Learning;Ensemble;Transfer Learning;Automatic Optical Inspection;AOI;EfficientNets
    Date: 2021-07-14
    Issue Date: 2022-10-31 06:21:15 (UTC+0)
    Publisher: 亞洲大學
    Abstract: 基於深度學習的自動光學檢查方法在最近幾年快速取代傳統的方法。如何提高瑕疵檢測的準確率是自動光學檢查重要的環節。集成學習是應用多重的機器學習模型來提高準確率。如何集成不同的深度學習模型來提高準確率也是自動光學檢查的重要課題。 在本論文中,先使用遷移式學習訓練8個基於GoogleAI團隊發表的EfficientNet深度學習模型來進行自動光學檢查。進一步應用集成學習的方式將各模型預測的答案整理成單一預測結果。使得自動光學檢查準確率可以達到99.63%。
    Automatic Optical Inspection methods based on deep learning have rapidly replaced traditional methods in recent years. How to improve the accuracy of defect detection is an important part of Automatic Optical Inspection. Ensemble learning is the application of multiple machine learning models to improve accuracy. How to integrate different deep learning models to improve accuracy is also an important topic for Automatic Optical Inspection. In this paper, I used transfer learning to train EfficientNet deep learning models published by the Google AI team for automatic optical inspection. Ensemble learning method is further applied to organize the answers predicted by each deep learning model into single prediction results. The accuracy of Automatic Optical Inspection defect inspection can reach 99.63%.
    Appears in Collections:[資訊工程學系] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML55View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback