ASIA unversity:Item 310904400/113030
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21692171      在线人数 : 745
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/113030


    题名: Caffeic Acid Attenuates Multi-Drug Resistance in Cancer Cells by Inhibiting Efflux Function of Human P-glycoprotein
    作者: Teng, Yu-Ning
    Teng, Yu-Ning
    王昭能
    Wang, Charles C.N.
    Li, Wei-Chieh
    Liao, Wei-Chieh
    Chin-Chuan, H
    Hung, Chin-Chuan
    贡献者: 生物資訊與醫學工程學系
    关键词: caffeic acid;cancer multidrug resistance;P-glycoprotein;phenolic acid
    日期: 2020-01-20
    上传时间: 2020-10-14 05:37:25 (UTC+0)
    出版者: 亞洲大學
    摘要: Multidrug resistance (MDR) is a complicated ever-changing problem in cancer treatment, and P-glycoprotein (P-gp), a drug efflux pump, is regarded as the major cause. In the way of developing P-gp inhibitors, natural products such as phenolic acids have gotten a lot of attention recently. The aim of the present study was to investigate the modulating effects and mechanisms of caffeic acid on human P-gp, as well as the attenuating ability on cancer MDR. Calcein-AM, rhodamine123, and doxorubicin were used to analyze the interaction between caffeic acid and P-gp, and the ATPase activity of P-gp was evaluated as well. Resistance reversing effects were revealed by SRB and cell cycle assay. The results indicated that caffeic acid uncompetitively inhibited rhodamine123 efflux and competitively inhibited doxorubicin efflux. In terms of P-gp ATPase activity, caffeic acid exhibited stimulation in both basal and verapamil-stimulated activity. The combination of chemo drugs and caffeic acid resulted in decreased IC50 in ABCB1/Flp-InTM-293 and KB/VIN, indicating that the resistance was reversed. Results of molecular docking suggested that caffeic acid bound to P-gp through GLU74 and TRY117 residues. The present study demonstrated that caffeic acid is a promising candidate for P-gp inhibition and cancer MDR attenuation.
    關聯: MACROMOLECULES
    显示于类别:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML307检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈