ASIA unversity:Item 310904400/112981
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21678791      線上人數 : 436
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 管理學院 > 經營管理學系  > 期刊論文 >  Item 310904400/112981


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/112981


    題名: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
    作者: Li, LL;Li, LL;Zhao, X;Zhao, X;曾明朗;Tseng, Ming-Lang;RR, Tan;RR, Tan
    貢獻者: 經營管理學系
    關鍵詞: Wind power prediction;Support vector machine;Differential evolution;Improved dragonfly algorithm;Prediction accuracy
    日期: 2019-12
    上傳時間: 2020-09-07 05:16:11 (UTC+0)
    出版者: 亞洲大學
    摘要: It is hard to predict wind power with high-precision due to its non-stationary and stochastic nature. The wind power has developed rapidly around the world as a promising renewable energy industry. The uncertainty of wind power brings difficult challenges to the operation of the power system with the integration of wind farms into power grid. Accurate wind power prediction is increasingly important for the stable operation of wind farms and the power grid. This study is combined support vector machine and improved dragonfly algorithm to forecast short-term wind power for a hybrid prediction model. The adaptive learning factor and differential evolution strategy are introduced to improve the performance of traditional dragonfly algorithm. The improved dragonfly algorithm is used to choose the optimal parameters of support vector machine. The effectiveness of the proposed model has been confirmed on the real datasets derived from La Haute Borne wind farm in France. The proposed model has shown better prediction performance compared with the other models such as back propagation neural network and Gaussian process regression. The proposed model is suitable for short-term wind power prediction.
    關聯: JOURNAL OF CLEANER PRODUCTION
    顯示於類別:[經營管理學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML229檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋