ASIA unversity:Item 310904400/112840
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21665583      在线人数 : 542
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/112840


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/112840


    题名: Spatio-temporal context-aware collaborative QoS prediction
    作者: Zhou, Qimin;Zhou, Qimin;Wua, Hao;Wua, Hao;Yue, Kun;Yue, Kun;許慶賢;Hsu, Ching-Hsien
    贡献者: 資訊工程學系
    日期: 2019-11
    上传时间: 2020-08-31 07:34:39 (UTC+0)
    出版者: 亞洲大學
    摘要: With the exponential growth of Web services, various collaborative QoS prediction methods have been suggested to make an efficient evaluation of quality-of-services (QoS) and assist users selecting appropriate services. It is still a technical challenge to be taken into account the impact of complex spatio-temporal contexts of service invocations and make use of their characteristics in the forecasting process. To this end, we propose two universal spatio-temporal context-aware collaborative neural models (STCA-1 and STCA-2) to make QoS prediction by considering invocation time and multiple spatial features both of service-side and user-side. Our proposed models utilize hierarchical neural networks to realize the embedding expression of original features, the generation of second-order features, the fusion of first-order and second-order features, the interaction between spatial features and temporal features layer by layer. In particular, attention mechanism is introduced to automatically assign weights to spatial features and realize the discriminative application in feature fusion. Experiments on a large-scale dataset demonstrate the effectiveness of the proposed method: (1) The prediction error can be significantly reduced in comparison with the baseline methods particularly in the case of sparse training data, where our models achieve a performance improvement by about 10.9-21.0% in term of MAE and NMAE, and by 2.4-7.8% in term of RMSE. (2) Attention mechanisms enable us to give intuitive explanations of the effectiveness of feature fusion more reasonably and thus strengthen the interpretability of the prediction models.
    關聯: Future Generation Computer Systems-The International Journal of eScience
    显示于类别:[資訊工程學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML235检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈