ASIA unversity:Item 310904400/111666
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21670103      線上人數 : 525
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/111666


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/111666


    題名: Enhancing Design of a Visual-Servo Delayed System
    作者: 蔡志仁;Tsai, Zhi-Ren;張耀仁;Chang, Yau-Zen
    貢獻者: 資訊工程學系
    日期: 2018-09
    上傳時間: 2018-12-24 09:23:11 (UTC+0)
    摘要: A robust adaptive predictor is proposed to solve the time-varying and delayed control problem of an overhead crane system with stereo-vision servo. The predictor is based on the use a recurrent neural network (RNN) with tapped delays, and is used to supply the real-time signal of swing angle. There are two types of two discrete-time controllers under investigation: the proportional-integral-derivative (PID) controller and the sliding controller. First, a design principle of the neural predictor is developed to guarantee the convergence of its swing angle estimation. Next, an improved version of the Particle Swarm Optimization algorithm, the parallel particle swarm optimization (PPSO) method, is used to optimize the control parameters of these two types of controllers. Finally, a homemade overhead crane system equipped with the Kinect sensor for visual servo is used to verify the proposed scheme. Experimental results successfully demonstrate effectiveness of the approach, which also show the parameter convergence in the predictor.
    關聯: Journal of Electronic Science and Technology
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML255檢視/開啟


    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋