ASIA unversity:Item 310904400/111601
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 94286/110023 (86%)
造訪人次 : 21671117      線上人數 : 684
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/111601


    請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/111601


    題名: Enhanced channel estimation in OFDM systems with neural network technologies
    作者: Ch, Chia-Hsin;Cheng, Chia-Hsin;Hua, Yao-Hung;Huang, Yao-Hung;陳興忠;Chen, Hsing-Chung;*
    貢獻者: 資訊工程學系
    日期: 2018-04
    上傳時間: 2018-10-22 03:45:12 (UTC+0)
    摘要: Orthogonal frequency division multiplexing (OFDM) provides an effective and low complexity means of eliminating inter-symbol interference for transmission over frequency selective fading channels. In OFDM systems, channel state information (CSI) is required for the OFDM receiver to perform coherent detection or diversity combining, if multiple transmit and receive antennas are deployed. In practice, CSI can be reliably estimated at the receiver by transmitting pilots along with data symbols. In this paper, we investigate and compare various efficient pilot-based channel estimation schemes by neural network technologies for OFDM systems. We present further the application of functional link neural fuzzy network (FLNFN) for channel estimation in the investigated OFDM systems. We compared bit error rates of the proposed neural network with that of the other neural network technologies, the least square (LS) algorithm, and the minimum mean square error (MMSE) algorithm. Our results demonstrate that the proposed FLNFN algorithm can enhance the performance of channel estimation in existing OFDM channel environments.
    關聯: SOFT COMPUTING
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在ASIAIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋