ASIA unversity:Item 310904400/111601
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 94286/110023 (86%)
造访人次 : 21669373      在线人数 : 1159
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/111601


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/111601


    题名: Enhanced channel estimation in OFDM systems with neural network technologies
    作者: Ch, Chia-Hsin;Cheng, Chia-Hsin;Hua, Yao-Hung;Huang, Yao-Hung;陳興忠;Chen, Hsing-Chung;*
    贡献者: 資訊工程學系
    日期: 2018-04
    上传时间: 2018-10-22 03:45:12 (UTC+0)
    摘要: Orthogonal frequency division multiplexing (OFDM) provides an effective and low complexity means of eliminating inter-symbol interference for transmission over frequency selective fading channels. In OFDM systems, channel state information (CSI) is required for the OFDM receiver to perform coherent detection or diversity combining, if multiple transmit and receive antennas are deployed. In practice, CSI can be reliably estimated at the receiver by transmitting pilots along with data symbols. In this paper, we investigate and compare various efficient pilot-based channel estimation schemes by neural network technologies for OFDM systems. We present further the application of functional link neural fuzzy network (FLNFN) for channel estimation in the investigated OFDM systems. We compared bit error rates of the proposed neural network with that of the other neural network technologies, the least square (LS) algorithm, and the minimum mean square error (MMSE) algorithm. Our results demonstrate that the proposed FLNFN algorithm can enhance the performance of channel estimation in existing OFDM channel environments.
    關聯: SOFT COMPUTING
    显示于类别:[資訊工程學系] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈