English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21696646      Online Users : 798
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 資訊學院 > 資訊工程學系 > 博碩士論文 >  Item 310904400/111195


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/111195


    Title: 遞迴神經網路系統與前饋式多層感知機之研究與實作
    Authors: 江厚德
    Contributors: 資訊工程學系碩士在職專班
    Keywords: 前饋式多層感知機、遞迴神經網路、狀態空間、倒傳遞演算法、multiple layer perceptron、recurrent neural networks、state space、back propagation
    Date: 2018
    Issue Date: 2018-07-18 03:32:43 (UTC+0)
    Publisher: 亞洲大學
    Abstract: 本論文提出了前饋式多層感知機(multiple layer perceptron, MLP)與遞迴式神經網路(recurrent neural networks, RNN)之學習效果進行實現與比較,本論文所提出的遞迴神經網路係以狀態空間,並以區域回授的方式呈現,在倒傳遞演算法的計算下,我們發現區域回授的RNN在學習的效果上明顯優於傳統的MLP,最後我們以數值案例驗證了本論文所提方法的有效性。
    In this thesis, a multiple layer perceptron (MLP) and a recurrent neural network (RNN) are proposed for investigation and comparison in the sense of learning performances. The proposed RNN is a local feedback network and is composed by a state space realization. By using back propagation learning algorithm, the learning performances of the proposed RNN is better than that of the conven-tional MLP. Finally, numerical examples are performed to illustrate the effec-tiveness of the proposed approach.
    Appears in Collections:[資訊工程學系] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML293View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback