ASIA unversity:Item 310904400/100215
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 94286/110023 (86%)
Visitors : 21656052      Online Users : 527
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/100215


    Title: Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta
    Authors: RC, McCarthy;RC, McCarthy;盧大宇;Lu, Dah-Yuu;Alkhateeb, Alkhateeb A;Alkhateeb, Alkhateeb A;AM, Gardeck;AM, Gardeck;CH, Lee;CH, Lee;Wessling-Res;Wessling-Resnick, M;*
    Contributors: 光電與通訊學系
    Date: 2016-01
    Issue Date: 2016-08-08 06:41:14 (UTC+0)
    Abstract: Background

    Alzheimer’s disease is associated with amyloid-beta (Aβ)-induced microglia activation. This pro-inflammatory response promotes neuronal damage, and therapies are sought to limit microglial activation. Screening efforts to develop new pharmacological inhibitors require a robust in vitro cell system. Current models lack significant responses to Aβ, and their use in examining age-related neurodegenerative diseases is questionable. For example, the commonly used BV-2 microglial line was derived from embryonic mononuclear cells and its activation by various stimuli is limited. To this end, we have established a new immortalized microglial (IMG) cell line from adult murine brain. The objective of this study was to characterize Aβ-induced activation of IMG cells, and here, we demonstrate the ability of cannabinoids to significantly reduce this inflammatory response.

    Methods

    Microglial cells derived from adult murine brain were immortalized via infection with the v-raf/v-myc retrovirus under conditions that selectively promote microglia growth. The presence or absence of markers CD11b and F4/80 (microglial), NeuN (neuronal), and GFAP (astrocytic) was assessed by immunofluorescence microscopy and western blotting. Using IMG and BV-2 cells, levels of pro- and anti-inflammatory transcripts in response to extracellular stimuli were determined by quantitative PCR (qPCR). Phagocytosis of fluorescent beads and fluorescein isothiocyanate (FITC)-labeled Aβ oligomers was assessed using flow cytometry and fluorescence microscopy. FITC-Aβ uptake was quantified using a fluorescence plate reader. The ability of cannabinoids to mitigate Aβ-induced expression of inducible nitric oxide synthase (iNOS) was evaluated.

    Results

    IMG cells express the microglial markers CD11b and F4/80 but not NeuN or GFAP. Relative to BV-2 cells, IMG cells increased iNOS (>200-fold) and Arg-1 (>100-fold) in response to pro- and anti-inflammatory stimuli. IMG cells phagocytose foreign particles and Aβ oligomers, with the latter trafficked to phagolysosomes. Aβ-induced activation of IMG cells was suppressed by delta-9-tetrahydrocannabinol and the CB2-selective agonist JWH-015 in a time- and concentration-dependent manner.

    Conclusions

    IMG cells recapitulate key features of microglial cell activation. As an example of their potential pharmacological use, cannabinoids were shown to reduce activation of Aβ-induced iNOS gene expression. IMG cells hold promising potential for drug screening, mechanistic studies, and functional investigations directed towards understanding how Aβ interacts with microglia.
    Relation: Journal of Neuroinflammation
    Appears in Collections:[Department of Photonics and Communication Engineering] Journal Article

    Files in This Item:

    File SizeFormat
    index.html0KbHTML466View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback