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An Innovative Method for the Analysis of
Scalar Modes of 3-D Dielectric Optical
Waveguides
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Abstract

In this paper, an exact Fourier cosine method is proposed for the numerical calculation
of the propagation constant in the rib-type dielectric waveguides with arbitrary index
profile. Example is given for rib waveguides based on semiconductor material and silicon
dioxide. It establishes the accuracy of Fourier cosine method as a criterion in calculation of
critical design parameters such as propagation constant and mode field profile. Moreover,
the accuracy and CPU time of this method are presented as well as compared with the

commercial software Beam PROP.
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I. Introduction

With the great progress of integrated
optic circuit, single mode waveguide is
important to be used as a fundamental
device. Therefore, numerical methods to
analyze waveguides are essential to
understand propagation characteristics of
light and to develop the optical design of
the optical devices. These methods consist
of the finite difference method (FDM) [1-
2], the finite element method FEM) [3-4]
and the beam propagation method (BPM)
[5], the generalized Fourier variational
method [6] or the Fourier operator
transform method [7]. Recently, we
proposed a new method suitable to
waveguide analysis and demonstrated the
efficiency and the accuracy of the method
by comparison with the commercial
software Beam PROP.

In this paper, we propose an exact
semi-analytic approach to find the modal
indices and modal fields of optical rib
waveguides. In the approach, the cross
section of a rib waveguide is divided into
several regions, in each of which both the
refractive index profile and the field
distribution is expressed as Fourier cosine
series, respectively. In each region, a

solution form of modal fields can be

derived from a second-order differential
matrix equation. The accuracy of finding
the modal index depends on the number of
terms used in expanding the aforementioned
refractive profile (as well as the modal
field) into Fourier cosine series. The
method of expanding both refractive index
profile and the field distribution into
Fourier cosine series has proven to be
relatively efficient and accurate in finding
the modes of one-dimensional optical
waveguides (i.e., slab waveguides). This
technique has been for the first time
applied to optical rib waveguides here.
In the proposed method, the field in
each region is expressed into a Fourier
cosine series. Note that neither an
effective rib waveguide nor mode
expansion (for the rib region) is used
by the proposed method. Furthermore,
the index profile is expressed into a
Fourier cosine series in each region and
then substituted in the wave equation to
obtain a corresponding matrix equation,
from which an exact closed-form solution
for the field can be found. In the following
one can find that the proposed method
provides much better accuracy in
determining the modal index than these

aforementioned semi-analytic methods.
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In Section two, the theory of the
proposed matrix method for the cases
of scalar modes is outlined. In Section
three, we present the computational
results, where one can see the accuracy
and efficiency the method provides.
Finally, Section four followed by a

brief summary for this paper.

I1. Theory
In the analysis of the scalar mode of
the rib-type waveguide, the cross-section
of the considered rib waveguide is divided
into four regions, as shown in Figl. The
coordinates y1 to y3 represent, respectively,
the boundaries between two corresponding
adjacent regions. The coordinates x1 and
x2 are the positions of the two rib’s
sidewalls. Clearly, for regions I (i.e., for
O<y<yl), Il (yl<y<y2), and IV (y3<y<y4),
the refractive indices aren,, n, and n,
(all of which are constant), respectively;
while for region III (i.e., for y2<y<y3), the
refractive index n j*(x) follows the
distribution
ni(x)=n?2, forx <x<x,
=n?, for 0 <x<x,

and X, <x<x,

(1

. 2
Note that the function n,” (x) can be
extended into an even periodic function
with a period of 2-x,. Then we can have the
Fourier cosine series expansion
N
n,” (x)= z a, cos nAwx

n=0

with Aw =p /x3 and N being large enough.
In each region defined in Fig. 1, the electric
field distribution can be likewise expanded,

i.e., we can write the field in region i as

N
e, (x,y)= Ze’n (y)cosnAwx a periodic
n=0 ’
distribution extended over —0<x < .

Here e,’ represents the amplitude of a
spatial spectral component in the Fourier
expansion for region i. Now we consider

the scalar wave equation

628 azg 5
Py +6x_2+(k° n*(x,y)-pHe =0 (2)

separately for each region, but noting that

n’(x,y) is equal to n22 , n12 , noz(x) , and
n32 forregions I, I, IITl and IV, respectively.
Here in Eq. (2), b is the propagation
constant and k, the wave number of the
free space. For region I, we replace
n’(x,y) of Eq. (2) by nzzand substitute
the Fourier cosine series expansion of the
field in the equation. Then we can obtain a
series of harmonic terms, i.e., the terms

with cos mAwx (m=0,1,2,...,N), on the
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left-hand side of Eq. (2). After equating all
the coefficients of the cosine terms to zero,
we have a set of differential equations that
can be expressed in the following matrix
form.
0’E,
oy’

+(ky’n," 1=W = B*1)E, =0 (3)

Here the vector E, is defined by
o1 1 .

E =[e, ,e ,e,,--rev] with T
representing the transpose; I is the identity

matrix and W is a diagonal matrix defined as

0 o C : 0
0 (Aw) 0
0 0 (aw) - - -
= 0 . , G
< (N=-DAw)* 0
o - o 0 (NAw)’ |

In a similar way we can obtain two
differential matrix equations, respectively,

for regions Il and IV, and they are

0°E, 2 2 ) 5
P +(k,n 1-W - B DHE, =0  (5)
y

and

0’E, 2 2 )
82+(k0n3I—W—,BI)E4=O (6)
y

where vectors £, and E, are given as
297
E2 :[eo 561 562 s T €N ] and

4 4 4.7 .
E,=[e, ,e, ,e, ;- .en | ,respectively.

For region III, we assume

N
n’(x, y) = Zan cosnAwx and the wave
n=0

N
field is Y e’s(y)cosnAwx then we

n=0
substitute these two terms into Eq. (2). A
manipulation similar to that leading to Eq.
(3) (to Egs. (5) and (6) as well) then gives
the matrix equation

O’E,

2

+(ky’A—W = B*NE, =0 (7

where matrix A is defined as

24, a a, a .. ay ay

da, dayta, ata, e, ... a4y, tay 4y tay

da, ata; lagta, atag ... G tay, 4, tay,
A:E Qa, ata, ata; dayta, ...

2
c dagrayy,

|20, ay, tay, 2ay+ay, |

®)

Explicit solutions to Egs. (3), (5), (6)

and (7) are found, respectively, to be

_go exp[\,ﬂz — Ky (y_yl)]_
& exp[vﬂz -k, (y =)l
g, expl/B° =K, (¥ = )]

E (y)=

| &N eXp[\/ﬂz — Ky (y_yl)]_
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- - IV). The boundary conditions here state
2
by cos| \/L’ﬂz(y YW =AI 1 at the field and its first derivative with
b COS[\/%()} —0) 4] respect to y are continuous at positions y1,
E.() = by coslyy, =B~ (v = y1) =42 y2, and y3. Consequently, we have the
’ ' following boundary conditions:
. OF OFE
E(y)=E(»n) —n=—">[»
_bNCOS[\/VN_ﬂz(y_y1)_¢zv]_ " oy
OE OE
B _ Ez(y2)=E3(J’2)’a—2|J’z=E3|J’2
dy expl— > =8, (y = )] a; o
dyexpl—f> =0, (y=y)l | Es0)=Es) Sy =Tty (10
d, eXp[_\/ﬁ2_5z(y_Y3)] . . .
E,(y)= ‘ Using the six boundary conditions above,
we can derive two matrix identities as
) shown below.
| dyexpl—f* =3, (-]  K(B)-X-L(B)-Y=0 (11)
- and M(B)-X +N(B)-Y =0 (12)

N

E, =) Yc,cosp A, — B (y=1,)-6,) ()
n=0

Herek,,qg,,l,andd, (i=0,1,2,--- ,N)

are the eigenvalues of matrices
(ky’n, T =W, (ky"n, T =W, (k" A—W)
and (k,’n,’I W), respectively; and
Y (i=0,L2,----,N) is the eigenvector of
matrix (k,”4—W). In the identities of (9),
the parameters g,,b,,c,,d,.,f, and q,
@=012,--- ,N) should satisfy the
boundary conditions at the interfaces
between two adjacent regions (e.g. regions

I and II; regions II and III; regions III and

Here vectors X and Y are defined as X=
[c,c08q,, ¢, €08Q, ...y €0sq ]" and Y=
[c,sing,,c, sing, .....c, sing ] Matrices

K,L,M and N contain elements that

depend on b .
To solve for b , we rewrite Eqs. (11) and
(12) as
{K(ﬂ) —L(ﬁ)HX}:{O} (13)
Mp) NP |LY] [0

Since there should exist a nontrivial

solution for Eq. (13), the following
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equation must hold.

N {{K(m —L(ﬂ)}}
MPB) N

where det{.} represents the determinant of

=0 (14

a matrix. The equation in (14) is thus used
to determine the modal index (which is
equal to f/k,). A Newton-Raphson
algorithm [8] is quite efficient in solving

Eq. (14) and is used in this study.

III. Numerical Results

Here we present numerical results for
an example of rib waveguides. The
example, denoted by structure 1 in Table I,
is a waveguide based on semiconductor
material and silicon dioxide. The refractive
indices and structural parameters are given
in the table for this structure. The single-
mode waveguide in structure 1 was studied
by Ref [4]. The modal indices of this
waveguide calculated by Ref[4] is also
given here for a comparison with the
numerical results obtained using the
commercial software BeamPROP and the
proposed method.We ran the software
Beam-PROP, and the proposed method in a
PC equipped with Pentium-1.25GHz.

Table 2 shows the effective index n,,

calculated by the proposed method, the

commercial software BeamPROP, and the
method of Ref. [4], for the scalar mode of
the rib waveguide of structure 1 (single-
mode waveguide). In the proposed method,
the number of terms in the Fourier cosine
series expansion (i.e., N) varies from 15 to
54, and these n,; converge to 3.391147. It
is evident that the calculated n,, is almost
the same as those obtained by BeamPROP
and Ref. [4]. The CPU time spent by the
proposed method is less than 1.4 sec for N
= 54, while BeamPROP needs much more
time.

Fig. 2 and Fig. 3 show the normalized
field distribution for the fundamental
scalar mode in the x and y direction where
the continuities of Ex across the air-
dielectric interface along x and y direction

are found in those two figures.

IV. Conclusion

In conclusion, we have presented a
practical and versatile method for the
calculation of propagation field through rib-
type structure. As data shown in table2, the
proposed method can rapidly calculate the
mode index with high accuracy and is more
versatile than many existing numerical
methods. Consequently, the proposed

method would be capable of yield accurate
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results for waveguides with large refractive
index discontinuities over the transverse
cross section. Therefore, it may be applied
to the simulation and calculation of the
polarized waves in strongly guiding

structure.
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Table 1: The wavelength and the structural

parameters of rib waveguide

considered in this paper.

n3 W(um)h(gm)d( pm)x1(pm)x3(pm)y1( um) y4( pm)

1 |LSSwm 344 334 1 2

0.2 2.2 6.4 2.2 6.4
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Table 2: Comparison of modal indices calculated by the proposed method, the commercial
software Beam PROP and the method of Ref. [4], for the scalar mode of the rib

waveguide of structure 1.

The proposed method Beam PROP Ref.[4]

N N oy cpu(sec) grid sizes (um) o cpu(sec) Ny

15| 3.403138 | 0.15 |Ax=Ay=0.05,=Az=1 3.390867 0.3 3.391148

251 3.391911 0.30 | Ax=Ay=0.025,=Az=1 3.391070 1.4

351 3.391402 | 0.59 | Ax=Ay=0.01,Az=1 3.391131 9.8

40 | 3.391336 | 0.71 | Ax=Ay=0.005,Az=1 3.391140 90

46 | 3.391287 1.03

50 | 3.391250 1.22

54 | 3.391147 1.39

A
v4
region IV
B —— — =
region [IIF -
2 —_
Y region II
yl
cregion ] * , *
0 >
0 x1 x2 x3

Fig.1 Dividing the cross-section of a rib waveguide into several regions in the cases of
scalar modes. y1, y2 and y3 represent the coordinates in the y axis, denoting the interface

between regions.




32 BEVE2% S+—H ERBENATOENS

Horizontal Cut of Mode Profile at Y=0.35
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Fig. 2 Normalized field distribution for the fundamental scalar mode (Ex) of structure 1 in

the x direction where contour patterns become maximum

Vertical Cut of Mode Profile at X=0
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Fig. 3 Normalized field distribution for the fundamental scalar mode (Ex) of structure 1 in

the y direction where contour patterns become maximum




