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Abstract

In this paper, an exact Fourier cosine method is proposed for the numerical calculation 
of the propagation constant in the rib-type dielectric waveguides with arbitrary index 
profile. Example is given for rib waveguides based on semiconductor material and silicon 
dioxide. It establishes the accuracy of Fourier cosine method as a criterion in calculation of 
critical design parameters such as propagation constant and mode field profile. Moreover, 
the accuracy and CPU time of this method are presented as well as compared with the 
commercial software Beam PROP.
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摘 要

本論文提出以一正確傅立葉餘弦方法在任意折射率分佈之脊形介電光波導之純量

模態的數值計算，並以半導體材料二氧化矽製成波導佐證，它建立了以本方法所計算

之光傳播常數及場形分佈為設計光纖元件之標準。
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I. Introduction
  With the great progress of integrated 

optic circuit, single mode waveguide is 

important to be used as a fundamental 

device. Therefore, numerical methods to 

analyze waveguides  are  essent ia l  to 

understand propagation characteristics of 

light and to develop the optical design of 

the optical devices. These methods consist 

of the finite difference method (FDM) [1-

2], the finite element method FEM) [3-4] 

and the beam propagation method (BPM) 

[5], the generalized Fourier variational 

me thod  [6 ]  o r  the  Four ie r  ope ra to r 

t ransform method [7] .  Recent ly,  we 

p roposed  a  new method  su i t ab le  to 

waveguide analysis and demonstrated the 

efficiency and the accuracy of the method 

by comparison wi th  the  commercia l 

software Beam PROP.

In this paper, we propose an exact 

semi-analytic approach to find the modal 

indices and modal fields of optical rib 

waveguides. In the approach, the cross 

section of a rib waveguide is divided into 

several regions, in each of which both the 

refractive index profile and the field 

distribution is expressed as Fourier cosine 

series, respectively. In each region, a 

solution form of modal fields can be 

derived from a second-order differential 

matrix equation. The accuracy of finding 

the modal index depends on the number of 

terms used in expanding the aforementioned 

refractive profile (as well as the modal 

field) into Fourier cosine series. The 

method of expanding both refractive index 

profile and the field distribution into 

Fourier cosine series has proven to be 

relatively efficient and accurate in finding 

the modes of one-dimensional optical 

waveguides (i.e., slab waveguides). This 

technique has been for the first time 
applied to optical rib waveguides here. 
In the proposed method, the field in 
each region is expressed into a Fourier 
cosine series. Note that neither an 
effective rib waveguide nor mode 
expansion (for the rib region) is used 
by the proposed method. Furthermore, 
the index profile is expressed into a 
Fourier cosine series in each region and 
then substituted in the wave equation to 
obtain a corresponding matrix equation, 
from which an exact closed-form solution 
for the field can be found. In the following 
one can find that the proposed method 
provides much better  accuracy in 
determining the modal index than these 
aforementioned semi-analytic methods. 
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In Sect ion two,  the theory of  the 
proposed matrix method for the cases 
of scalar modes is outlined. In Section 
three, we present the computational 
results, where one can see the accuracy 
and efficiency the method provides. 
Finally, Section four followed by a 
brief summary for this paper.  

 
II. Theory

  In the analysis of  the scalar mode of 

the rib-type waveguide, the cross-section 

of the considered rib waveguide is divided 

into four regions, as shown in Fig1. The 

coordinates y1 to y3 represent, respectively, 

the boundaries between two corresponding 

adjacent regions. The coordinates x1 and 

x2 are the posit ions of the two rib’s 

sidewalls. Clearly, for regions I (i.e., for 

0<y<y1), II (y1<y<y2), and IV (y3<y<y4), 

the refractive indices are 2n , 1n  and 3n  

(all of which are constant), respectively; 

while for region III (i.e., for y2<y<y3), the 

r e f r a c t i v e  i n d e x  n 0
2( x )  f o l l o w s  t h e 

distribution

n0
2 ( x ) �= n1

2 ,  for x1 < x < x2 

= n3
2 ,  for 0 < x < x1 

             and  x2 < x < x3         

(1)

Note that the function )(2
0 xn  can be 

extended into an even periodic function 

with a period of 2∙x3. Then we can have the 

F o u r i e r  c o s i n e  s e r i e s  e x p a n s i o n 

∑
=

∆=
N

n
n xnaxn

0

2
0 cos)( w  

with 3/ xpw =∆  and N being large enough. 

In each region defined in Fig. 1, the electric 

field distribution can be likewise expanded, 

i.e., we can write the field in region i as

∑
=

∆=
N

n
n

i
i xnyeyx

0
cos)(),( we , a periodic 

distribution extended over ∞<<∞− x  . 

Here i
ne  represents the amplitude of a 

spatial spectral component in the Fourier 

expansion for region i. Now we consider 

the scalar wave equation

   ,   for x1 < x < x2 )(2
0 xn 2

1n

=  , for 0 < x < x1  2
3n

and x2<x<x3 .              
(1)

Note that the function  can be 

extended into an even periodic function 
with a period of 2·x3. Then we can have the 
Fourier cosine series expansion 

 with 

)(2
0 xn

N

n
n xnaxn

0

2
0 cos)( 3/ x

and N being large enough. In each region 
defined in Fig. 1, the electric field 
distribution can be likewise expanded, i.e., 
we can write the field in region i 

as , a periodic 

distribution extended over 

N

n
n

i
i xnyeyx

0
cos)(),(

x  . 

Here  represents the amplitude of a 

spatial spectral component in the Fourier 
expansion for region i. Now we consider the 
scalar wave equation  

i
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0)),(( 222
02
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2

2

yxnk
xy

(2 )                                                    

separately for each region, but noting that 

 is equal to , , , and 

for regions I, II, III and IV, respectively. 

Here in Eq. (2), 

),(2 yxn 2
2n 2

1n )(2
0 xn

2
3n

 is the propagation 
constant and  the wave number of the 
free space. For region I, we replace 

 of Eq. (2) by and substitute 

the Fourier cosine series expansion of the 
field in the equation. Then we can obtain a 
series of harmonic terms, i.e., the terms 

with

0k

),(2 yxn 2n2

xmcos  (m=0,1,2,…,N), on the 
left-hand side of Eq. (2). After equating all 
the coefficients of the cosine terms to zero, 
we have a set of differential equations that 
can be expressed in the following matrix 
form. 

0)( 1
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02
1

2

EWnk
y
E

   (3) 

  Here the vector  is defined by 

 with T 

representing the transpose; I is the identity 
matrix and W is a diagonal matrix defined 
as

1E
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1
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 In a similar way we can obtain two 
differential matrix equations, respectively, 
for regions II and IV, and they are  
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   (5)              

and

0)( 4
22

3
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4
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EWnk
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E

   (6)              

where vectors  and  are given as 

and 

, respectively.  

2E 4E
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NeeeeE ],,,,[ 22

2
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1
2
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T
NeeeeE ],,,,[ 44

2
4

1
4
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For region III, we put 

  
(2)

                                                      

separately for each region, but noting that 

),(2 yxn  is equal to 2
2n , 2

1n , )(2
0 xn , and 

2
3n for regions I, II, III and IV, respectively. 

Here in Eq. (2), b is the propagation 

constant and 0k  the wave number of the 

free space.  For  region I ,  we replace 

),(2 yxn  of Eq. (2) by 2
2n and substitute 

the Fourier cosine series expansion of the 

field in the equation. Then we can obtain a 

series of harmonic terms, i.e., the terms 

with xm w∆cos  (m=0,1,2,…,N), on the 
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left-hand side of Eq. (2). After equating all 

the coefficients of the cosine terms to zero, 

we have a set of differential equations that 

can be expressed in the following matrix 

form.
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where det{.} represents the determinant of a 
matrix. The equation in (16) is thus used to 
determine the modal index (which is equal 
to 0/ k ). A Newton-Raphson algorithm [8] 
is quite efficient in solving Eq. (16) and is 
used in this study.  
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  Here we present numerical results for an 
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table for this structure. The single-mode 
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waveguide calculated by Refs [4] is also 
given here for a comparison with the 
numerical results obtained using the 
commercial software BeamPROP and the 
proposed method. . We ran the software 
Beam-PROP, and the proposed method in a 
PC equipped with Pentium-1.25GHz. 
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Eq. (14) and is used in this study. 

III. Numerical Results 
Here we present numerical results for 

an  example  of  r ib  waveguides .  The 

example, denoted by structure 1 in Table 1, 

is a waveguide based on semiconductor 

material and silicon dioxide. The refractive 

indices and structural parameters are given 

in the table for this structure. The single-

mode waveguide in structure 1 was studied 

by Ref [4]. The modal indices of this 

waveguide calculated by Ref[4] is also 

given here for a comparison with the 

numerical  results  obtained using the 

commercial software BeamPROP and the 

proposed method.We ran the software 

Beam-PROP, and the proposed method in a 

PC equipped with Pentium-1.25GHz.

Table 2 shows the effective index effn  

calculated by the proposed method, the 

commercial software BeamPROP, and the 

method of Ref. [4], for the scalar mode of 

the rib waveguide of structure 1 (single-

mode waveguide). In the proposed method, 

the number of terms in the Fourier cosine 

series expansion (i.e., N) varies from 15 to 

54, and these effn  converge to 3.391147. It 

is evident that the calculated effn  is almost 

the same as those obtained by BeamPROP 

and Ref. [4]. The CPU time spent by the 

proposed method is less than 1.4 sec for N 

= 54, while BeamPROP needs much more 

time.

Fig. 2 and Fig. 3 show the normalized 

field distribution for the fundamental 

scalar mode in the x and y direction where 

the continuities of Ex across the air-

dielectric interface along x and y direction 

are found in those two figures. 

IV. Conclusion
In conclusion, we have presented a 

practical and versatile method for the 

calculation of propagation field through rib-

type structure. As data shown in table2, the 

proposed method can rapidly calculate the 

mode index with high accuracy and is more 

versatile than many existing numerical 

methods. Consequently, the proposed 

method would be capable of yield accurate 
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results for waveguides with large refractive 

index discontinuities over the transverse 

cross section. Therefore, it may be applied 

to the simulation and calculation of the 

polar ized waves in  s t rongly guiding 

structure.
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Table 1: �The wavelength and the structural 

parameters  of  r ib  waveguide 

considered in this paper. 
Table 1: The wavelength and the structural parameters of rib waveguide considered in this 
paper.  

structure n1 n2 n3 w( m ) h( m )d( m )x1( m )x3( m )y1( m )y4( m )
m

Table 2: Comparison of modal indices calculated by the proposed method, the commercial 
software Beam PROP and the method of Ref. [4], for the scalar mode of the rib 
waveguide of structure 1. 

Beam PROP Ref.[4] 

effn m effn effn
1,05.0 zyx
1,025.0 zyx

1,01.0 zyx

1,005.0 zyx

x3x2x10

y1
y2

y4

y3

0

region IV

    region  III

region II

region I

Fig.1 Dividing the cross-section of a rib waveguide into several regions in the cases of scalar 
modes. y1, y2 and y3 represent the coordinates in the y axis, denoting the interface 
between regions.  
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Table 2:  Comparison of modal indices calculated by the proposed method, the commercial 

software Beam PROP and the method of Ref. [4], for the scalar mode of the rib 

waveguide of structure 1.

The proposed method Beam PROP Ref.[4]

N effn cpu(sec) grid sizes (µm) effn cpu(sec) effn

15 3.403138 0.15 △x＝△y＝0.05,＝△z＝1 3.390867 0.3 3.391148

25 3.391911 0.30 △x＝△y＝0.025,＝△z＝1 3.391070 1.4

　

　

　

　

　

35 3.391402 0.59 △x＝△y＝0.01,△z＝1 3.391131 9.8

40 3.391336 0.71 △x＝△y＝0.005,△z＝1 3.391140 90

46 3.391287 1.03 　

50 3.391250 1.22

54 3.391147 1.39

 

   
x3x2x10

y1
y2

y4

y3

0

region IV

    region  III

region II

region I

Fig.1 Dividing the cross-section of a rib waveguide into several regions in the cases of 

scalar modes. y1, y2 and y3 represent the coordinates in the y axis, denoting the interface 

between regions. 
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Fig. 2 Normalized field distribution for the fundamental scalar mode (Ex) of structure 1 in 

the x direction where contour patterns become maximum

Fig. 3 Normalized field distribution for the fundamental scalar mode (Ex) of structure 1 in 

the y direction where contour patterns become maximum


