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A Novel Approach to Study Wave Characteristics of
Multimode Interference Couple: Polarized TE Modes

Abstract

In this paper, we propose a new method to study wave propagation in Longitudinally

invariant waveguides with arbitrary index profile. In our method, we keep, in the wave

equation, the second order derivative of transverse wave field with respect to the propagation

direction, which is usually neglected in paraxial approximation utilized in many cases. An

explicit expression for the wave field at any longitudinal position along an optical waveguide

is derived, thus excluding the use of beam propagation algorithm for computation. This study

has demonstrated that our approach yields the same results as those by using a commercial

software in which a beam propagation method with Pade' approximation is used.
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I.Introduction  
Beam- propagation methods (BPM)

have been frequently used to compute the

wave field along an optical waveguide.

With these methods, the field distribution at

any longitudinal position of a waveguide

can be found by either finite- difference [1-

4] or finite-element [5-8] discretization in

the transverse domain. These conventional

methods, especially the finite-difference

BPM algorithm, are nowadays highly

referenced and used in commercial

softwares [e.g. BPM-CAD and

BeamPROP].

In dealing with the wave propagation

with the paraxial approximation valid in

use, the second order derivative with

respect to propagation distance in the wave

equation is simply neglected. This then

results in a set of first-order linear

differential equations, which can be easily

solved. If the paraxial approximation is

invalid, as is true in many cases, the

aforementioned second order derivative

should remain in order to obtain exact and

accurate solutions in solving the

corresponding wave propagation problems.

A recurrence formula for the BPM

scheme has been widely employed to

consider the effect of the aforementioned

second-second derivative in the so-called

wide-angle approximation [9,10] . The

Pade' approximant is commonly used as

one kind of such approximation. The

numerical results  obtained  by  using  the

Pade' approximation in a BPM method are

more accurate and closer to exact ones

when a higher-order  Pade' approximant

operator is used [11, 12].

II. The Proposed method
We assume that the transverse domain

of the wave field is one-dimensional. That

is, we deal with the following wave

equation in our problem

The resultant wave equation in the

example of slab waveguides with

longitudinally invariant  structures



corresponds to the following matrix

equation:

Here we have expressed the electric field as

where N is a large enough number, T the

window (or the period) for  Fourier cosine

series, and the propagation constant. In

deriving Eq. (2), we have assumed the

wave propagates in the z  direction  and x is

the  one-dimensional transverse coordinate.

The matrix B in Eq. (2) is a constant full

matrix, and E is defined as

( ),  where t represents

transpose. In  the  conventional BPM (

beam propagation  method ) method for

solving Eq.(1) with  Pade' approximation

used, a recurrence  formula is employed to

obtain approximate results. Basically Eq.

(2) can  be solved with similar

approximation used. 

However, such Pade' approximation in

dealing with matrix arithmetic could result

in quite complicated computing algorithm

and yield computational  inefficiency.  Here

we propose a novel method to solve the

second -order matrix equation ( i.e., Eq.

(2)).  Since the matrix  B in Eq. (2) is not

diagonal, it is  difficult to solve it directly.

In this new method, Eq. (2) is first

transformed into a matrix equation such as

Here the vector F is defined as E=Y F,

where Y is a matrix containing all the

eigenvectors of B; is the diagonal matrix

with its diagonal elements being the

eigenvalues of B (see Eq. (5) below).

Once it is solved, the vector E can be

obtained. Eq. (3) can now be readily solved

because is diagonal. To show how to solve

it, we first note that the matrix equation in

(3) corresponds to a set of second-order

ordinary differential equations:

where (i=0,1,2,....N) are

(                                          )



elements of F and Λ ,respectively. That is,

F and Λ are defined here as

and

The solution of Eq.(4) is simply exp

exp

depend on the initial conditions. This

solution is explicit in expression and

henceforth the vector E can be explicitly

obtained as 

where and are constants and

are the eigenvector of B.

As we can see above, the conventional

beam propagation method would not be

used to solve the wave propagation

problem. In the method proposed here,

simply a set of ordinary differential

equations are to be solved. The whole

method is quite efficient in computation.

We have used the method to solve an

MMIC (multimode interference coupler)

problem as shown in Fig.1, where the input

waveguide is single-mode with the core

index 1.8 and the cladding index 1.446; and

the multimode waveguide has the same

refractive indices for the core and the

cladding as the input waveguide. In the

study here, we have assumed a TE wave is

launched at the input end of the multimode

waveguide. The electric field distribution at

the output end of the multimode waveguide

calculated by use of the proposed method

with N=500 is shown in Fig.2 (a). To

compare our method with others, we have

also used a commercial software. Fig.2 (b)

shows the corresponding electric field

distribution obtained by BeamPROP with

the approximation of Pade' order (4,4) (the

output end of the multimode waveguide is

at z=60un). It can be seen from Figs.2 (a)

and (b) that the discrepancy between both



results (i.e., in Figs. (a) and (b)) is quite

negligible. Fig. 2(c) shows the

corresponding result as Pade' (1,0)

approximation is used by the commercial

software. This is equivalent to the result

obtained with paraxial approximation used,

i.e., the result obtained with the term

in Eq. (2) neglected.

III. Numerical results

Fig.1 MMIC slab waveguide under study

Fig.2(a)

. 

Fig. 2(b)

Fig. 2(c)

Fig,2 Electric field distributions of the

MMIC shown in Fig. 2. (a) and (b) are the

results obtained by use of the proposed

method and BeamPROP, respectively. (c) is

the result obtained with paraxial

approximation used. The result of 2(a) is in

good agreement with that of 2(b) at

z=60um.
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