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Abstract 

In this paper, we proposed a new approach 
called “evolutionary genetic algorithm” that 
improves the efficiency and the quality of the simple 
genetic algorithm (GA) in constructing parallel tests. 
The basic principle of this evolutionary genetic 
algorithm combines two theories. One is that of 
genetic diversity, which is beneficial to species 
evolutionary existence. The other is eugenic theory, 
which can increase the probability of finding better 
offspring. Experimental results show that our 
approach is much better than the simple genetic 
algorithm in terms of time efficiency and solution 
quality. The evolutionary genetic algorithm would be 
a more powerful tool than the simple genetic 
algorithm for parallel test construction. 

Keywords: genetic algorithm, parallel test 
construction, time efficiency, solution quality. 

本研究將提出一新的演算方法”演化式基因

演算法(evolutionary genetic algorithm)”應用於平

行測驗建構上。此演算方法主要結合兩個概念：即

生物多樣性(genetic diversity)以及優生學理論

(eugenic theor)。自然界中，生物多樣性有利於物

種演化綿延不絕；優生學概念則強調產生更佳的下

一子代。結合這兩個概念於本研究所提出之演化式

演算方法，其實驗結果顯示，此演算方法比起傳統

基因演算法具有更高的效率以及得到更佳的解。同

時也證明此演化式基因演算法將成為平行測驗建

構更有效的工具。 

關鍵詞：基因演算法，平行測驗建構，時間效率，

解答品質 

1. Introduction 
In the past decades, test construction methods 

(Lord, 1953; Lord & Novick, 1968; Lord, 1980; 
Weiss, 1982; Hambleton & Swaminathan, 1985; 

Theunissen, 1985; Baker, Cohen, & Barmish, 1988; 
van der Linden & Boekkooi-Timminga, 1989) were 
simple and inflexible due to the lack in popularity of 
personal computers. Recently, related research 
(Luecht & Hirsch, 1992; Stocking, Swanson, & 
Pearlman, 1993; Armstrong, Jones, & Rutgers, 1996; 
Armstrong, Jones, & Kunce, 1998; van der Linden & 
Adema, 1998; Csöndes & Kotnyek, 2002; van der 
Linden, 2005; van der Linden, Ariel & Veldkamp, 
2006) has proposed various techniques and methods 
on test construction successfully due to 
improvements in the efficiency of computers. 
However, since test construction is an NP-hard 
problem (van der Linden, 1998), the execution time 
presents exponential growth with growth in problem 
size. An efficient technique is still required to find 
better solutions. The genetic algorithm is based on 
the Darwinian Theory that has a powerful ability to 
find the optimal or near optimal solutions from a 
huge pool (Goldberg, 1989), and has also been 
designed to solve the parallel test problem (Sun, 
2000), obtaining very good results. In this paper, we 
combine genetic diversity (Fisher, 1930; Hubbell, 
2001) with eugenic theory (Barrett & Kurzman, 2004) 
to improve the efficiency and quality of the simple 
genetic algorithm for parallel test construction. 

First, we briefly introduced the concept of 
parallel test construction by the simple genetic 
algorithm. To solve the parallel test construction 
problem by a genetic algorithm, we first transformed 
this problem into an optimized form. The formula of 
test information function can be represented by a 
linear math model as follows. 
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where p is the number of total constraints, Ai,q is the 
qth content attribute value of item i, Cq is the qth 
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constraint and kq and '
qk are the constraint values.  

When we want to construct a test, Eq. (1) would 
be maximized and would satisfy all constraints (Eq. 
(2)). However, in the construction of parallel tests, 
several tests need to be constructed and the deviation 
between them (the sum of squared errors) needs to be 
minimized. If we choose one of the parallel tests as a 
standard (denote by dj ), then the other test 
information (denoted by Oj) of the two parallel tests 
should have the minimum deviation from the 
standard test by using the following equation. 
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Equation (3) would be used in the fitness function of 
the genetic algorithm. 
The detailed steps of applying a genetic algorithm to 
create parallel tests can be described as follows.  

First, set the initial population of chromosome 
strings X. Each chromosome string X k represents a 
constructed test k, which contains n bits (n is the 
number of items in the item bank), among which, m 
bits are 1 and the rest are 0, for a test with m items. 
Each bit ix  represents whether an item is included 

or not in the test ( ix =1 , Yes； ix =0 , No). For each 
chromosome, we can calculate the fitness function as 
follows: 
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where k

jO  is the value of the test information 
function at ability level j for the kth parallel test. The 
lower the fitness value (deviation) is, the better the 
result obtained. When constraints are considered, the 
fitness(Xk) is modified as in Equation (5): 
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where r is the number of constraints which have not 
satisfied the constraints in Equation (2). Then, 
complete the following genetic operations for 
generating P offspring from current chromosomes in 
the population. 
(1) Two-point crossover operation: two offspring for 
each pair of parents are generated with the probability 
pc. A section of the chromosome string in the 
offspring is the same as one parent and else is the 
same as the other parent. 
(2) Two-point mutation operation: randomly select 

some chromosomes with probability pm from the 
population and randomly choose two positions. 
Mutation occurs when 0 is changed to 1 and 1 is 
changed to 0 in the selected chromosome, and it then 
becomes the offspring. 
(3) Reproduction operation: the best chromosome 
string is found in the “parent” population having the 
reproduction probability pr. These then become the 
offspring which make up the new population (also 
called elitism selection). 

Repeat the above steps (1) ~ (3) for generating n new 
chromosomes (tests) and replace the old ones in the 
population until a generated chromosome (solution) 
fits the expected result or the number of generations 
reaches the predefined value. 

Finally, a chromosome (test) with the minimum 
deviation within the population would be the solution 
of the parallel test construction problem. 

The simple genetic algorithm can deal with 
parallel test construction simply and easily with 
constraints and obtain very good results, but the 
efficiency and quality could be improved by the 
further inclusion of some useful theories. In this 
paper, we propose an “evolutionary genetic 
algorithm” to improve the test quality of evolution 
which combines two theories, genetic diversity and 
eugenic theory. 

In a natural life system, there are similar or 
different characteristics making up each individual. 
This variation is the meaning of bio-diversity or 
polymorphism (Fisher, 1958). In general, 
bio-diversity is the basic characteristic of a life 
system, but diversity does not arise from natural 
selection. Most of the time, crossover and mutation 
are important processes in creating genetic diversity. 
Therefore, genetic diversity in the interlocking nature 
of the system guarantees species continuous 
evolution in natural selection and the species should 
evolve to fit with its environment more easily (Fisher, 
1930). 

We will apply the concepts of the 
above-mentioned theories to the simple genetic 
algorithm. The basic concept is to examine the 
diversity between two new offspring and compare 
that against the diversity between the new offspring 
and the chromosomes included in population. If the 
diversity was greater than the threshold value, then 
the new offspring would be selected into the 
population. Else, the offspring is eliminated through 
competition. As a result, it ensures the diversity of 
intra-population in the environment. Corresponding 
this to the parallel test construction problem, we can 
find a set of tests having the greatest difference to 
find the best parallel test form.  

According to eugenic theory, there is a higher 
probability of generating better offspring if two of the 
better individuals are selected to mate (Barrett & 
Kurzman, 2004). Therefore, we can find better results 
efficiently if we select only the better individuals to 
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mate at each evolutionary generation. The concept is 
similar to selecting the stud in animal husbandry. 
However, the local minimum often occurs during the 
evolutionary process. 

We have, therefore, incorporated the advantages 
of these two theories into the simple genetic 
algorithm. Experimental results show that our 
proposed method can construct parallel tests with a 
smaller margin of error than the simple genetic 
algorithm. 

 
2. Evolutionary genetic algorithm 

for parallel test construction 
To verify the effectiveness of our evolutionary 

genetic algorithm, we first compared the performance 
of three techniques: genetic diversity, eugenic theory, 
and the mix of genetic diversity and eugenic theory. 
The concept of each technique as applied to parallel 
test construction is stated as follows. 
(1) Genetic Diversity Method (GDM): The items 
selected for inclusion in each test are as far as 
possible different. Each test is represented by a one 
dimensional chromosome which is selected to evolve 
for the next generation when the distance between it 
and tests already included in the population is great 
enough (i.e., the distance beyond a predefined 
threshold value). This technique generates a set of 
offspring (tests) of the greatest difference for 
evolution. 
(2) Eugenic Theory Method (ETM): This technique 
considers only the fitness value of each test 
(offspring). Tests with the smaller number of errors 
would be selected to mate by the crossover operation 
generating two new tests (offspring) which have a 
higher probability of finding the better solutions. 
(3) Evolutionary Genetic Algorithm (EGA): This 
approach combines the above two techniques, GDM 
and ETM. In the first half of the execution of EGA, 
we apply the GDM which makes the chromosomes 
(tests) as diverse as possible in the initial evolution 
thus avoiding having the results fall into a few local 
optimal solutions. Then, the selection pool is made as 
wide as possible by the genetic diversity method in 
the first half of the process of evolution. After the 
first half of the process, we apply the ETM to search 
for the optimal solution from a set of better solutions 
(candidates) to in turn evolve better offspring in the 
next generation. Then, optimal or near optimal 
solutions would be generated rapidly. 

The detailed execution of the steps of each 
approach to parallel test construction is stated as 
follows. 

 
(1) Genetic Diversity Method  

The principle of GDM is based on the concept 
of the genetic diversity of nature. In nature, diversity 
is critical for the stable existence of a species. In 
other words, individuals need to maintain a degree of 
variation (diversity) to confront challenge for natural 

selection (Endler, 1986). So if we maintain the 
diversity of selected items during the selection 
process, it is useful in finding various combinations 
of items for test construction. 

For reaching genetic diversity, the selection 
process of two generated offspring after the crossover 
operation of the simple genetic algorithms is 
designed as follows. 
(1) When two offspring are both infeasible solutions, 
neither of them is selected into the population for the 
next generation; (2) when one offspring is a feasible 
solution and another is an infeasible solution, the 
selection is made by computing the distance between 
the feasible solution and other selected solutions in 
the population. If the distance is greater than the 
predefined threshold value, then this offspring is 
included in the population for the next generation; (3) 
when two offspring are both feasible solutions, we 
first compute the distance between the two offspring. 
If the distance is less than the threshold value, then 
the distance of the offspring with the greater distance 
between it and other selected solutions would be 
computed. This offspring is then selected into the 
population if the computed distance is also greater 
than the threshold value. If the distance between the 
two offspring is greater than or equal to the threshold 
value, then the distance between each one of the 
offspring and other selected solutions is computed. 
The offspring is selected into the population if this 
distance is also greater than the threshold value. The 
algorithm of GDM could be stated as follows. 
 

/* The selection process of GDM for two offspring 

'
1P  and '

2P  after the crossover operation of GA */ 

(1) Set the threshold value of distance: dθ. 

(2) Selecting offspring 
'

1P  or '
2P  

(2.1) if '
1P  and '

2P  are both infeasible 

    then regenerate two offspring '
1P  and '

2P  

(2.2) if only '
1P  (or '

2P ) is feasible 

         then  

compute the distance between 

'
1P (or '

2P ) and other solutions kP in 

population P 

       

 ∈∀= kk PPPd ),,(distancemin{ '
1

min
1 P} 
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2

min
2 P} 

if 1  
mind (or 2  

mind ) ≥ dθ   

then select '
1P (or '

2P ) 

       else regenerate offspring '
1P  and '

2P  

(2.3) if '
1P  and '

2P  are both feasible 

  then 

compute the distance d12 between '
1P  

and '
2P  

compute the distance 1  
mind  

between '
1P  and other solutions kP in 

population P 

compute the distance 2  
mind  

between '
2P  and other solutions kP in 

population P 

if d12 < dθ 

then if 1  
mind > 2  

mind  and 

1  
mind ≥ dθ  then select '

1P   

elseif 2  
mind ≥ 1  

mind  and 

2  
mind ≥ dθ  then select '

2P   
else regenerate offspring 

'
1P  and '

2P  

   if d12 ≥ dθ 

        then 
if 1  

mind ≥ dθ  then select '
1P  

   if 2  
mind ≥ dθ  then select '

2P  

if 1  
mind < dθ  and 2  

mind < dθ  

then regenerate offspring '
1P  and 

'
2P  

 
(2) Eugenic Theory Method 

The concept of the eugenic theory method is to 
select the better solutions into the population such 
that there is a higher probability to generate better 
offspring after the crossover operation. However, the 
probability of trapping at local minimum is also 
increased. The selection process for two offspring by 
the ETM is designed as follows. (1) When two 
offspring are both infeasible solutions, neither of 

them is selected into the population; (2) when one 
offspring is a feasible solution and another is an 
infeasible solution, select the feasible (better) 
solution into the population; (3) when two offspring 
are both feasible solutions, select the better (smaller 
fitness value) one into the population. The algorithm 
of ETM could be stated as follows.  

 
/* The selection process of ETM for two offspring 

'
1P  and '

2P  after the crossover operation of GA */ 

if 
'

1P  and '
2P  are both feasible 

then select the smaller of 
'

1P  and '
2P  

elseif only 
'

1P  (or
'

2P ) is feasible, then 

select the feasible solution '
1P  (or '

2P )  

else regenerate offspring '
1P  and 

'
2P  

 

(3) Evolutionary Genetic Algorithm 
This method combines the advantages of the 

genetic diversity method (GDM) and eugenic theory 
method (ETM). Initially, we adopted the genetic 
diversity method to search a wide ranging problem 
space and in this way avoided falling into localized 
optimal solutions. Then, we expanded the search 
space making it as wide as possible in the first half 
stage. Now, after the search for diversity, we apply 
the eugenic theory method and select better solutions 
to continue the intensive search for the optimal 
solution regardless of diversity any more (e.g., if the 
number of generations was set to 1000, then the first 
500 generations would adopt GDM, and the last 500 
generations would adopt ETM). In this way, we 
consider both genetic diversity and eugenic theory 
and obtain results that were better than the simple GA. 
The algorithm of EGA could be stated as follows. 

 
/* The selection process of EGA for two offspring 

'
1P  and '

2P  after the crossover operation of GA */ 
 (1) Initially, set gener_no to 1 
 (2) Repeat 
     if gener_no < 1/2 generation_number    /* 

gener_no is the index of generations */ 
         then apply the GDM 

          else apply the ETM             

       gener_no = gener_no + 1 
Until gener_no = generation_number 

 
3. Performance comparison 

To compare the performance of the proposed 
three techniques, we used a computer to generate a 
virtual 1000-item bank. The parameters of each item 
are randomly generated and their scopes are shown in 
Table 1. 
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The parameters set for evolution were defined as 
follows: n = 1000, m = {30, 40, 50}, P = 100, pc = 
86.3%, pm = 0.4%, pr = 13.3%, gener_no = 300 ~ 
5000, and dθ = 6.  

For experiments of 300-generations, EGA had 
the least number of errors in 5 out of 9 cases, and 
ETM had the least number of errors for the remaining 
4 cases (as shown in Table 2).  

From Table 2, we can see that the ETM and 
EGA techniques obtained similar results. For further 
comparison of these two methods, more experiments 
proceeded with the number of generations changing 
from 300 to 5000. Simulations were divided into two 
parts. The first part (PART 1) included cases 
generated by ETM that were better than those of 
EGA at 300 generations (shown in Table 3). The 
other part (PART 2) composed the remaining five 
cases (cases generated by EGA that were better than 
those of ETM (shown in Table 4)). 

From experimental results, we found that the 
proposed EGA method obtained the best results 
among the three proposed approaches. We will now 
compare it with the previously proposed SGA method 
(Sun, 2000) of parallel test construction.  

 

4. Performance Evaluation 
In this section, we will compare the performance 

of EGA and SGA to verify the hypothesis that 
combining genetic diversity and eugenic theory into 
the SGA is useful for evolving better solutions. Nine 
hundred target tests were randomly generated by 
computer, and results were generated by the 
execution of EGA and SGA, respectively.  

Figure 3 (a) ~ (c) shows that in one-peak cases 
EGA had better solutions if the number of 
generations was beyond 1000. Figure 4 (a) ~ (c) 
shows that in two-peak cases EGA had better 
solutions if the number of generations was beyond 
500. Figure 5(a) ~ (c) shows that in uniform 
distribution cases EGA had better solutions for 
30-item and 40-item cases if the number of 
generations was beyond 1000 and for 50-item cases if 
the number was beyond 1500. Figures 3 ~ 5 also 
show that SGA often got trapped in a local minimum 
(horizontal periods of lines). Then, the results were 
worse for larger generations. Experimental results 
satisfied our postulation that the combination of 
genetic diversity and eugenic theory is useful for 
evolving better results.  

 
5. Conclusions 

This paper proposed three techniques, GDM, 
ETM, and EGA, to improve the performance of the 
simple genetic algorithm. The basic principles behind 
these techniques are: genetic diversity, eugenic theory, 
and the mixing of the two. Based on the constructed 
1000-item bank, 900 different target tests were 
simulated to compare the performance of these three 

techniques. Experimental results show that the EGA 
had the best performance for the cases with the larger 
number of generations. Then, another 900 different 
target tests were used to compare the performance of 
EGA and SGA, and the EGA was also better than the 
SGA after a large number of evolutionary generations. 
The phenomenon confirmed our hypothesis that “the 
combination of genetic diversity with eugenic theory 
could improve the performance of SGA.” The 
proposed evolutionary genetic algorithm would be 
more effective in parallel test construction than the 
SGA. 

In the future, we will reinforce our method and 
expect to solve more complex problems such as item 
duplication and item exploration. 
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Table1. The ranges of item parameters and constraints used in the 1000-item bank 

Three parameters Constraints 
   Attributes 

 

Information a b c Content Topic Skill Length 

Range 0.8 ~ 3.0 -3.0 ~ +3.0 0.1 ~ 0.3 1 ~ 10 1 ~ 5 1 ~ 6 20 ~ 50

Type real real real integer integer integer integer 

Mean 1.916 -0.013 0.201 5.396 2.989 3.515 34.854 

SD 0.627 1.740 0.059 2.893 1.381 1.675 8.909 

 

Table 2. The averages of the deviations (sum of squared errors) of the experimental results in different 

cases of 300 generations 

Algorithms 

Cases 
GDM ETM EGA 

one-peak-30 0.693828 0.638656* 0.656910 

one-peak -40 0.934632 0.813931 0.801122* 

one-peak -50 1.881100 1.601764 1.527370* 

two-peak -30 0.961837 0.860859* 0.961165 

two-peak -40 1.157878 1.053346* 1.114947 

two-peak -50 2.112837 1.843338* 1.863328 

uniform-30 0.035137 0.035211 0.030991* 

uniform -40 0.014054 0.014899 0.012977* 

uniform -50 0.015825 0.015395 0.013020* 
   (*: the best results among three algorithms) 

 

Table3. The averages of the deviations (sum of squared errors) of the experimental results for different 

cases and algorithms (PART 1) 

 Case-Algorithm 

 

   

Generation 

one-peak-30

-ETM 

one-peak-30

-EGA 

two-peak-30

-ETM 

two-peak-30

-EGA 

two-peak-30

-ETM 

two-peak-40

-EGA 

two-peak-50

-ETM 

two-peak-50

-EGA 

300 0.294235* 0.352977 1.397940* 1.606557 1.648128* 1.736090 3.511364* 3.720442

500 0.146861 0.106376* 1.065808 0.921360* 1.148937 1.106961* 2.340203 2.271899*

1000 0.063355 0.039203* 0.666984 0.521564* 0.861645 0.822929* 1.769672 1.755672*

1500 0.043929 0.015314* 0.602135 0.456566* 0.793820 0.775836* 1.676363 1.619012*

2000 0.030154 0.012043* 0.464633 0.385998* 0.771476 0.754100* 1.590481 1.563328*

2500 0.029399 0.010050* 0.407228 0.375111* 0.756032 0.725187* 1.560231 1.524355*
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3000 0.028657 0.009740* 0.400260 0.370656* 0.742678 0.710264* 1.529342 1.517970*

3500 0.027882 0.009243* 0.397096 0.366944* 0.734097 0.699263* 1.522353 1.510788*

4000 0.026648 0.007492* 0.397096 0.365606* 0.734097 0.695098* 1.522353 1.500471*

4500 0.025520 0.007492* 0.388716 0.365606* 0.726330 0.693452* 1.520028 1.491408*

5000 0.025462 0.007492* 0.388716 0.364780* 0.718295 0.693415* 1.512261 1.490924*

(*: better results) 

 

Table4. The averages of the deviations (sum of squared errors) of the experimental results for different 

cases and algorithms (PART 2) 

Case-algo

rithm 

 

Genera- 

tion 

one-peak 

-40-ETM 

one-peak 

-40-EGA 

one-peak 

-50-ETM 

one-peak 

-50-EGA 

uniform  

-30-ETM 

uniform 

-30-EGA 

uniform 

-40-ETM 

uniform 

-40-EGA 

uniform 

-50-ETM 

uniform 

-50-EGA 

300 0.180489 0.123472* 0.361709 0.250442* 0.024498 0.020462* 0.020808 0.018451* 0.011552 0.009039*

500 0.067727 0.047424* 0.102525 0.041080* 0.015097 0.012225* 0.012205 0.011719* 0.006650 0.005922*

1000 0.024944 0.017714* 0.026007 0.016006* 0.007920 0.003653* 0.005724 0.004079* 0.003527 0.003317*

1500 0.013203 0.011885* 0.017511 0.010248* 0.006816 0.003000* 0.004874 0.003123* 0.002409 0.002362*

2000 0.009769 0.008141* 0.013882 0.007206* 0.005903 0.002423* 0.003013 0.002364* 0.002203 0.002090*

2500 0.008722 0.007485* 0.012254 0.006813* 0.005798 0.002131* 0.002855 0.002004* 0.002051 0.002030*

3000 0.008377 0.006138* 0.011000 0.006084* 0.005440 0.002131* 0.002589 0.001859* 0.002018 0.001719*

3500 0.008166 0.005758* 0.009715 0.006084* 0.005440 0.002131* 0.002465 0.001859* 0.001948 0.001719*

4000 0.008166 0.005758* 0.009477 0.005809* 0.005440 0.002131* 0.002366 0.001795* 0.001948 0.001532*

4500 0.008166 0.005287* 0.009326 0.005012* 0.005284 0.002131* 0.002279 0.001795* 0.001786 0.001488*

5000 0.008166 0.004952* 0.008972 0.004951* 0.005065 0.002131* 0.002278 0.001795* 0.001785 0.001460*

(*: better results) 
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Figure 2. The averages of errors for ETM and EGA at different generations 
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(a) One-peak 30-item cases 
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(b) One-peak 40-item cases 
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(c) One-peak 50-item cases 

Figure 3. The performance of EGA and SGA for one-peak cases at different generations 
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(a) Two-peak 30-item cases 
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(b) Two-peak 40-item cases 
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(c) Two-peak 50-item cases 

Figure 4. The performance of EGA and SGA for two-peak cases at different generations 
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(a) Uniform distribution 30-item cases 
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(b) Uniform distribution 40-item cases 
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(c) Uniform distribution 50-item cases 

Figure 5. The performance of EGA and SGA for uniform distribution cases at different generations 
 


