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Abstract 

This paper presents a video 
surveillance system that is capable of 
detecting and classifying moving targets in 
real-time.  The system extracts moving 
targets from a video stream and classifies 
them into predefined categories according to 
their spatiotemporal properties. 
Classification of the moving targets is 
completed via a combination of a temporal 
boosted classifier and spatiotemporal 
“motion energy” analysis. We illustrate that 
a temporal boosted classifier can be 
designed that successfully recognizes five 
object categories: person(s), bicycle, 
motorcycle, vehicle, and person with 
umbrella. The proposed temporal boosted 
classifier has the unique ability to improve 
weak classifiers by allowing them to make 
use of previous information when evaluating 
the current frame.  In addition, we 
demonstrate a method to further process 

targets in the “person(s)” category to 
determine if they are single moving 
individuals or crowds.  It is shown that this 
challenging task of moving crowd 
recognition can be effectively performed 
using spatiotemporal motion energies.  
These motion energies provide a rich 
description of a target’s dynamic 
characteristics, from which classification 
can be performed. Our empirical evaluations 
demonstrate that the proposed system is 
extremely effective at recognizing all 
predefined object classes. 

Keywords ： video surveillance, object 
classification, spatiotemporal analysis 

1. Introduction 

Automatic moving target classification has 
attracted much attention in recent years [1], 
especially in the field of surveillance.  
Though much progress has been made 
[2-5][14], recognizing moving targets with 
high accuracy remains a challenging, 
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unsolved problem. Significant difficulties of 
moving target recognition in the surveillance 
setting include the facts that targets often 
have complex shapes due to their 
non-rigidness and can be of low-resolution 
because of the nature of a video camcorder. 
Matters are complicated further because of 
the sheer range of moving objects that can 
be observed within an environment.  

In the context of surveillance systems, a 
variety of machine learning classification 
techniques have been investigated, including 
support vector machines [5], naïve Bayes 
classifier [6], and AdaBoost [3]. AdaBoost is 
especially suitable for surveillance scenarios 
since it has achieved high detection rates 
using simple Haar-like features in real-time 
[3]. Though boosting paradigms have 
attracted significant attention recently, most 
previous moving target classification work 
has focused on boosting within a single 
frame. In fact, the use of temporal features 
as inputs to both weak and strong classifier 
levels has not been carefully studied in the 
past. However, in video frames, if a moving 
target is seen in one frame, it is very likely 
that it will be present in the next frame. 
Therefore, one critical contribution of this 
work is to present a novel method of 
introducing dynamic information into the 
AdaBoost framework. 

Within the surveillance domain, the 
targets that are typically of primary interest 
are people.  In this paper, our second goal 
is to further analyze moving targets that our 
temporal boosted AdaBoost system 
classifies as “person(s)”.  The purpose of 
post-processing this class of targets is so that 
we can further identify two sub-classes: 
moving crowds and moving single persons.  
Automatically identifying the number of 
people that are involved in an activity under 
surveillance is a critical component to 
attaining higher level scene understanding.   

Here, we propose to incorporate 
spatiotemporal information into our 
sub-classification module through the use of 
oriented energies. The general applicability 
of spatiotemporal orientations and their 

relationship to motion perception was first 
realized in [8].  One of the applications of 
this field initially considered was the 
recovery of optical flow using filters in 
space-time [11]. It was illustrated [13] that 
qualitative descriptors can be assigned to a 
local spatiotemporal region using oriented 
energy signatures. Spatiotemporal 
orientation-selective filters are already 
starting to be adopted in the tracking and 
surveillance domains.  In [10], orientation 
selective filtering of the spatiotemporal 
domain was performed to obtain a 
pixel-wise measure of coherent motion.   

In light of previous research, the main 
contributions of our proposed 
spatio-temporal analysis for crowd detection 
system are as follows.  First, efficient 
self-similarities are computed in spatial 
domain to detect candidates of moving 
crowds. Second, we apply powerful, 
oriented energy descriptors in temporal 
domain to recognize the real moving crowds 
within the candidates.   

The remainder of this paper is organized 
as follows. In Section 2 details the features 
used for describing spatial temporal patterns 
of moving targets and the proposed temporal 
boosted learning algorithm. Section 3 
introduces the moving crowd detection 
module based on spatiotemporal motion 
energies. Experimental results are shown in 
Section 4 and the conclusion is drawn in 
Section 5. 

2. Temporal Boosted Learning 

In this section, we first describe the features 
used for recognizing the five predefined 
target classes with our system. Once the 
features utilized in this work have been 
detailed, the actual temporal boosted 
classifier is described. 
2.1 Moving Target Features 
In real-time scenarios, it is important to use 
features that are computationally 
inexpensive and invariant to lighting 
condition. Therefore, in this work, the 
features employed include: (i) the 

                                                                             



eccentricity of the bounding ellipse of a 
moving target; (ii) the orientation of the 
major axis of the bounding ellipse; (iii) the 
peak position of the normalized horizontal 
and vertical projection of a moving target; 
(iv) the pixel percentage of the peak in the 
normalized horizontal and vertical 
projection; (v) the difference in pixel density 
within the moving target’s bounding box for 
two consecutive frames; (vi) the difference 
between the first four eigenvalues 
(computed by PCA) for the moving target in 
two consecutive frames. Therefore, the total 
dimensionality of the feature vector is 11. 
2.2 Temporal Boosted Learning 
Algorithm 

For our primary classification module, we 
use a modified version of AdaBoost [7] as 
the underlying learning algorithm.  The 
primary and significant alteration we make 
to the AdaBoost paradigm is the inclusion of 
dynamic target information so that a 
so-called temporal boosted binary classifier 
is constructed for each object category.  

In this work, we propose a new learning 
strategy. Usually, temporal coherence/ 
incoherence is ignored in the training 
process. However, the temporal information 
is particularly important in moving target 
classification since a single frame will often 
contain insufficient or unreliable data for 
proper recognition. Therefore, we propose a 
temporal boosted learning algorithm. 
Moving objects are tracked using our 
proposed tracking method [16]. For the 
training algorithm, the error function is 
defined to analyze 2s+1 consecutive frames 
so that temporal consistency of the object 
class can be evaluated. In this work, we train 
five classifiers, one for each object category 
(Vehicle, Bicycle, Person(s), Motorcycle, 
and Person with Umbrella). The details of 
the algorithm are as follows: 

Temporal Boosting Learning Algorithm 
Input: (1) sequence of N labeled 

examples {(x1,y1), 
(x2,y2),…,(xN,yN)} 

(2) distribution D over the N examples 

(3) weak learning algorithm 
WeakLearn 
(4) integer T specifying number of 
iterations 
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If a moving target is hypothesized to belong 
to more than one category, the final decision, 
the classified category, C, is the class that 
yields the maximum output value according 
to 
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where the weighting factor αt is normalized 
by the summation of all α for each iteration. 

3. Moving Crowd Detection Using 
Spatiotemporal Energies 

The second stage of our system is to further 
process targets which are identified as the 
“Person(s)” class in the first stage.  The 
purpose of this additional processing is to 
determine if a target under analysis is a 
single moving person or multiple individuals. 
We shall first describe the self-similarities 
based approach in Section 4.1.  Section 4.2 
describes the computation of motion 
energies and how they can be employed for 
detecting moving crowds. 

3.1 Self-Similarity based Moving Crowd 

                                                                             



Detection in the Spatial Domain 
In Fig. 1, we can clearly notice that under 

a somewhat elevated, top-down viewpoint, 
significant portions of each individuals’ 
torso is visible. The local intensity patterns 
exhibited by torso regions are often repeated 
in nearby image locations of moving crowds. 
Therefore, the problem of moving crowd 
detection can be transformed to the problem 
of computing local self-similarities in a 
region of interest.  

When measuring the self-similarity within 
a region of interest (ROI), we have a 
template image A and a target image G. The 
similarity between template A with size 
m×n and a patch B with size m×n within 
image G can be revealed using 
straightforward similarity measures, such as 
a simple correlation measurement, defined 
as[16] 
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,                                 (2) 
where A  and B  are the average of 
template A and a patch B, respectively.  

However, the value of the correlation 
measurement defined in (2) depends on the 
color consistency between the template and 
the patches within an ROI. In order to 
enhance the color contrast between 
neighboring uniform color regions, we use a 
histogram equalization approach. This 
technique enhances the ROI by mapping the 
gray levels to a small range of n levels. An 
example of ROI enhancement is shown in 
Fig. 1. Figure 1(b) shows an ROI and 
Fig.1(c) shows the corresponding enhanced 
image. 

To compute the self-similarities within an 
ROI, a template that represents the rough 
approximation of a person’s head and torso 
is used. Figure 1(a) shows the specific 
template.  The correlation surface 
computed using (2) is shown in Fig.1(d).  
Since people are of many different sizes and 
can be found at various distances from the 
camera, we compute convolution surfaces 
using the template of Fig. 1(a) at multiple 

scales. To combine information from 
multiple scales, we calculate the entropy EAi.  

),(ˆlog),(ˆ
)(),(

yxGyxGE r
YXyx

rAi ∑
×∈

−= .   (3) 

We compute the entropy of the 
normalized correlation surface, , to 
determine the importance of a template scale, 
A

AirG ,
ˆ

i. Thus, each correlation surface  is 
weighted according to its entropy and 
combined to form a normalized correlation 
surface 

AirG ,
ˆ

rG , as follows: 

( ) ( yxGEyxG Air

s

i
Air ,ˆ, ,

1
∑
=
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Hence, a region is labeled as a candidates 
crowd if there is a unique peak detected in 
the neighboring region. 

 
Fig. 1. Self-similarities in a moving crowd. (a) A 
single template in the shape of head and torso 
(30× 30) (b) A foreground region with a moving 
crowd. (c) Enhanced contrast of the foreground 
region in (b) obtained using histogram equalization 
and n=5 intensity levels. (d) Self-similarities are 
computed by the correlation between the template 
and image in (c) (red corresponds to the highest 
values). 

3.2 Moving Crowd Detection in the 
Spatiotemporal Domain using Motion 
Energies 
Once the candidate crowd regions have been 
identified using our self-similarity based 
approach, spatiotemporal analysis via 
motion energies can be used to eliminate 
false positives and detect true crowds. In this 
section, we shall first describe the technique 
of computing oriented energies.  
Subsequently, we will propose a method of 
processing these motion energies for the 

                                                                             



application of detecting crowds. 
3.2.1 Oriented Energy Computation 

When performing spatiotemporal analysis, 
significant information can be obtained by 
filtering the spatiotemporal volume 
representation of a video sequence with 
orientation selective filters. For this work, 
the filtering of space-time volumes was 
performed using broadly tuned, steerable, 
separable filters based on the second 
derivative of a Gaussian, G2, and their 
corresponding Hilbert transforms, H2 [5], 
with responses pointwise rectified (squared) 
and summed.  Filtering was completed 
across a total of four 3D orientations 

( )ξηθ ,=  where η  and ξ  specify polar 
angles.  The four orientations that were 
selected correspond to upward, downward, 
leftward, and rightward motion.  Thus, a 
measure of local motion energy, e, can be 
computed using 

( ) ( ) ( )[ ] ( ) ( )[ 2
2

2
2; xIHxIGxe ∗+∗= θθθ ] ,       (5) 

where x = (x, y, t) are spatiotemporal image 
coordinates, I is the image sequence, and * 
denotes convolution. This initial measure of 
local energy, (5) is dependent on image 
contrast.  However, a purer measure of 
oriented energies that is less affected by 
contrast can be obtained through 
normalization, 

( ) ( ) ( )( )εθθθ
θ

+= ∑ ~
~;;;ˆ xexexe ,    (6) 

where ε  is a small bias term to prevent 
instabilities when the overall energy content 
is small and the summation in the 
denominator covers all orientations. To 
ensure that the energies obtained are valid 
for an entire candidate crop box, additional 
padding pixels (both in space and in time) 
must be used during filtering. Specifically, 
in all dimensions, padding of size f/2 must 
be used, where f is the length of the 
separable 3D filters [9].  In this work, a 
padding size of 6 was needed, which means 
that 6 frames on either side of the current 
frame (yielding a total of 13 frames) were 
used when computing the motion energies. 
Figure 2 provides an illustrative example of 

the motion energies that are utilized 
throughout the remainder of the crowd 
detection system. 

 

 
Fig.2. A sample frame of the PETS 2006 [12] data set 
with its corresponding motion energies. The final two 
rows show the rightward, leftward, downward, and 
upward motion energies, from left to right, top to 
bottom. 

3.2.2 Moving Crowd Detection Using 
Motion Energies 
Once the motion energies for a candidate 
region have been computed, they can be 
used as a vehicle for classifying between 
crowds and non-crowds.  Our proposed 
moving crowd detector evaluates three 
criteria to determine if a candidate is, in fact, 
a crowd.  First, we check whether there is a 
significant amount of motion energy in more 
than one orientation within the candidate 
region.  Second, we determine if there are 
any large separations between regions that 
contain strong energy responses.  Third, we 
check whether there are motion energy 
signatures that are too complex to represent 
a single person.  If any of the three criteria 
are satisfied, the candidate is classified as a 
moving crowd.  In what follows, we shall 
describe in detail how these criteria are 
realized. 

 Criterion #1: Multiple Dominant 
Motion Orientations in Target Region 

The first criterion is to analyze the number 
of orientations that contain significant levels 

                                                                             



of energy.  Specifically, for each of the four 
orientations, we compute the sum of the 
energies across the target support 

( ) ( ),       (7) θθ ;ˆ *

1
i

n

i
XeS ∑

=

=

where ( )*** , yxX i =  is a single target candidate 
pixel at some temporal instant and i ranges 
such that covers the target’s support. 

*
iX

The summed energies of (7) can be 
represented as a normalized histogram and 
can subsequently be used to determine if a 
crowd is present within a candidate crop box. 
Typically, if a candidate region contains a 
single moving object, one motion channel 
will contain the vast majority of the energy.  
Thus, if there are two or more orientations 
with substantial motion energy, we conclude 
that there are multiple people in the target 
region.  Correspondingly, we use the 
following rule to decide if a crowd is 
present:  

( )[ ] (
⎩
⎨
⎧ >

= ≠∈

   otherwise  0,
max if ,1 max],4...1[

1
max

θαθθθ SS
D ii i

) ,  (8) 

where α is an empirically selected threshold 
and θmax is defined as the orientation with 
the maximal summed energy response 
across the target support.  Furthermore, D1 
= 0 and D1 = 1 indicate that a crowd is not 
present and present by Criterion #1, 
respectively. 

 Criterion #2: Detecting Separations 
between High Motion Energy Regions 

The goal of the second criterion is to 
recognize crowds when the individuals 
involved are far apart from one another.  
For this work, we assume that the camera 
angle is similar to that of the PETS 2006 
image shown in Fig. 2.  Under this 
assumption, we project the single dominant 
motion energy of the candidate crowd region 
onto the X-axis.  Projection is performed 
onto the X-axis because most crowds will 
predominately contain motion in the 
horizontal directions.   

The ideas of Criterion #2 can be presented 
more formally as 

( ) ( )∑ ∗∗ =
y

yxexp
~

max;~,ˆ θ ,    (9) 

where y~  varies over all rows in the 
candidate crowd region and x* corresponds 
to a column of the region.  The projected 
energies can be visualized as a normalized 
histogram.  Notice how the projected 
energies are close to zero for the image 
columns between the two individuals.  The 
goal of our second criterion is to identify 
when these low energy “gaps” occur.  If 
such a gap exists, it is concluded that the 
candidate region is a crowd.  
Mathematically, our methodology for 
finding gaps can be written as 

( )
⎩
⎨
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=
∗

otherwise,0
,...2,1  where if ,1 max,

2
CiPxp

D i β ,    (10) 

where xi
* corresponds to a column of the 

candidate crop box, β is a user-defined 
threshold, i varies over all C columns in the 
target support, and  Pmax is the largest 
projected sum, (9), for any of the candidate's 
columns.  Furthermore, D2 = 0 and D2 = 1 
indicate that a crowd is not present and 
present by Criterion #2, respectively. 

 Criterion #3: Detecting Complex 
Energy Patterns 

In a similar manner to Criterion #2, the third 
criterion is employed in cases where the 
crowd candidate contains motion in only one 
dominant orientation.  The third criterion in 
our system detects crowds based on the fact 
that the projected energy signatures of a 
crowd are typically much more complex 
than those created by a single person 
consisting of multitude peaks and valleys. 

4. Experimental Results 
In this section, we evaluate the performance 
of the temporal boosted classifier and the 
spatiotemporal-based moving crowd 
detector. 
4.1 Performance of Temporal Boosted 
Classifier 

In the training process, 200 samples were 
used for each object category. Since our 
system design uses multiple one-against-all 
classifiers, 200 samples for one category 

                                                                             



were included as positive examples while 
the other 800 samples from the other four 
categories were used as negatives. In the 
testing process, we made the system run for 
several days from 9 am to 5 pm under 
distinct weather conditions, including sunny, 
cloudy and rainy days.   
In order to compare with the proposed 
temporal boosted classifier, the original 
AdaBoost algorithm [7] was implemented. 
Table 1 shows the confusion matrix obtained 
using the original AdaBoost algorithm 
shown in light gray and that obtained when 
using our proposed method shown in deep 
gray, respectively. It is clear that the 
classification rate was substantially 
improved when temporal coherence was put 
into consideration. 

TABLE 1. CONFUSION MATRIX OF MOVING TARGET 
CLASSIFICATION OBTAINED BY USING ADABOOST.M1 

[7] AND BY USING THE PROPOSED TEMPORAL 
BOOSTING ALGORITHM 

 
Among the categories that gained 
improvement, we analyzed the situation 
between the bicycle and motorcycle classes 
in more detail. For the bicycle, it has a 
sparse wheel structure. In contrast to a 
bicycle, the wheel structure of a motorcycle 
is relatively dense. However, a sparse wheel 
cannot always be obtained for a bicycle due 
to lighting conditions and the cluttered 
background. Under these circumstances, 
temporal coherence associated with a 
tracked moving target is particularly 
important for improving the classification 
accuracy. 
4.2 Detection of Moving Crowds 

The performance of the moving crowd 
detection system was tested on a variety of 

video sequences within the PETS 2006 data 
set. The following parameters were 
empirically selected and were held constant 
for all experiments:  α= 1/3 and β= 0.05.   
The moving crowd detection system was 
evaluated qualitatively using the videos 
from the PETS 2006 database. Specifically, 
we wanted to observe that the system was 
capable of identifying crowds that satisfied 
each of the three separate criteria. 
Furthermore, it had to be ensured that the 
system did not produce a large number of 
false positives. Consequently, the system 
was presented with many examples of single 
moving persons to ensure that they were not 
misclassified as crowds. Fig.3 shows a 
variety candidate crowd and non-crowd 
regions obtained from the PETS 2006 
videos. 

 
Fig.3. Examples of candidate crowd regions and their 
projected dominant energy. These examples were 
correctly classified using Criterion #3. 
 

The performance of the crowd detection 
module was also measured quantitatively on 
the PETS 2006 dataset.  In total, our test 
set was comprised of 111 crowd data 
samples and 179 non-crowd samples.  Of 
the non-crowd examples, 6 contained only 
background portions of the scene, while 21 
displayed less than half of a single moving 
person.  The remaining non-crowd 
examples showed a single moving 
individual.   
The overall classification rate on all data 
samples (crowd and non-crowd) was 
computed to be 85.2%.  The confusion 
matrix of Table 2 provides additional details 

                                                                             



References regarding the system’s performance for the 
two classes.  As can be seen, the false 
negative rate was slightly higher than the 
false positive rate.  The general limitations 
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the cause of the majority of the 
misclassifications during our quantitative 
evaluation. Nonetheless, the overall 
performance of our crowd detection system 
was quite competitive when compared to 
other such systems in the literature. 
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