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Abstract 
A permutation P = (p1, p2, ... , pk) of 1 to k is 
called a pattern of the permutation T = (t1, 
t2, ... ,tn) of 1 to n, if and only if there is a 
length k subsequence T' of T such that the 
elements of T' are ordered according to the 

permutation P. The longest common 
permutation problem is of finding the 
longest pattern which is involved in two 

permutations π1 and π2. In this paper, we 
give a O(n6) time algorithm to find the 
longest common permutation between two 
permutations when one permutation is 
separable. Our results improve the Bouvel’s 
O(n8) time algorithm in [2]. 
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1. Introduction 
The longest common permutation 
problem can be defined as follows: 
Given two permutations π1 and π2, we 
want to find the longest pattern which is 
involved in π1 and π2. A permutation P 
= (p1, p2, ... , pk) of 1 to k is called a 
pattern of the permutation T = (t1, 
t2, ... ,tn) of 1 to n, if and only if there is 
a length k subsequence of T, say T' = 

, with i
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ki i it t t 1 < i2 < ... < ik, such 

that the elements of T' are ordered 
according to the permutation P, that is, 

 < 
ri
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t  iff pr < ps. If T does contain 

such a subsequence, we will say that T 
contains P, or that P matches into T. The 
longest common permutation problem is 
a generalization of the pattern 
involvement problem that is to decide 
whether P is a pattern matches into T. 
The general pattern involvement 
problem has shown to be NP-complete 
[1], but some polynomial solutions exist 
for special kinds of patterns like the 
separable ones [1, 4]. A permutation is 
separable, if it contains neither the 
pattern (2, 4, 1, 3) and (3, 1, 4, 2). 

The study of patterns in 
permutations has become very active in 
the recent years from both combinatorial 
and algorithmic research area. Form a 
combinatorial point of view, there are 
considerable many interested results in 
counting the number of permutations T 
that do not contain a smaller 
permutation P. Knuth [5] showed that 
the number of permutations of 1, ... , n 
without the pattern (3, 1, 2) is equal to 
the nth Catalan number.     [6] 
considered permutations without the 
pattern (2, 1, 3). Rotem [7] considered 
permutations without either of the 
patterns (2, 3, 1) or (3, 1, 2). Simion and 
Schmidt [8] go further, counting the 
number of permutations avoiding all the 
patterns in any subset of the 
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permutations on 1, 2, 3. West [9] 
showed that the number of separable 
n-permutations is the (n-1)-st  
number. From an algorithmic point of 
view, we want to design algorithms for 
general pattern involvement and 
common permutation probelm. Bose [1] 
gave an algorithm for counting the 
number of pattern matching in 
permutations with O(kn
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6) time and 
O(kn4) space, when P is separable (the 
early version of this paper is in LNCS 
709, page 200-209, 1993). Ibarra [4] 
improve the Bose’s results in 1993 to get 
an algorithm with O(kn4) time and O(kn3) 
space. Bouvel [2] proposed the longest 
common permutation problem and give 
a O(n8) time algorithm. In this paper, we 
give a O(n6) time algorithm to find the 
longest common permutation between 
two permutations based on the work of 
[4], when one permutation is separable. 
 
2. Separable permutation and 
separating tree 

A permutation σ of size n is called 
separable if it avoids the patterns 3 1 4 2 
and 2 4 1 3 or equivalently if it has a 
binary separating tree. A permutation σ 
that does not contain π as a pattern is 
said to avoid π. A separating tree for a 
permutation (p1, ... ,pk) of 1, ... , k is an 
ordered binary tree T with leaves 
(p1, ... ,pk) in that order, such that for 
each node V , if the leaves of the subtree 
rooted at V are pi, pi+1,..., pi+j , then the 
set of numbers {pi, pi+1,..., pi+j} is a 
subrange of the range 1, ... , k. This 

subrange is called the range of the node 
V. Let Vl be the left child and Vr be the 
right child of node V respectively. Node 
V is called a positive node we say, if the 
range of Vl just precedes the range of Vr, 
and V is called a negative node vice 
versa. Figure 1 is an example of 
separating tree for permutation {3, 4, 2, 
1, 6, 5, 7, 8}. Note that the separating 
tree need not be unique. For example, 
the permutation (4, 5, 3, 1, 2) has the 
two separating trees (((4, 5), 3), (1,2)) 
and ((4, 5), (3, (1, 2))).  
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Figure 1 Separating tree for permutation 
{3, 4, 2, 1, 6, 5, 7, 8}. 

Consider a well-known result from 
graph theory. For any permutation P of 
1, ..., n, a graph can be defined with 
vertices 1, ..., n and with an edge (i, j) 
for i < j iff i appears after j in the 
permutation. The graphs formed this 
way are permutation graphs. It is easy to 
see that a permutation containing the 
pattern (3, 1, 4, 2) or (2, 4, 1, 3) is 
equivalent to the graph containing an 
induced P4. In general, graphs that do 
not contain an induced path on 4 vertices 
are called P4-free graphs. Thus, the 
recognition of separable permutation is 
equivalent to the recognition of P4-free 



graphs, which can be accomplished in 
linear time [3]. 
 
3. The Algorithm 
In this section, we describe a polynomial 
time algorithm for finding a longest 
common permutation between two 
permutations. The input of our algorithm 
is a permutation τ, and a separating tree 
Tσ of a separable permutation σ. Our 
algorithm uses the dynamic 
programming strategy, and defines the 
following array should be filled. For 
every node V of Tσ, 1 ≤ i ≤ j ≤ n, and 1 ≤ 
x ≤ n, let SML(V, i, j, x) be the set of 
longest common permutations in the 
match of V into (τi, ... , τj) with every 
matched element of (τi, ... , τj) ≤ x, and 
SMR(V, i, j, x) be the set of longest 
common permutations in the match of V 
into (τi, ... , τj) with every matched 
element of (τi, ... , τj) ≥ x. Define L(V, i, j, 
x) = max {0} ∪ {y: y is the smallest 
matched element of m in SML}, and ML 

(V, i, j, x) = the longest common 
permutations in SML with the smallest 
matched element is L(V, i, j, x). 
Similarly, define R(V, i, j, x) = min {n+1} 
∪ {y: y is the largest matched element of 
m in SMR}, and MR (V, i, j, x) = the 
longest common permutations in SMR 

with the largest matched element is R(V, 
i, j, x). Note that L(V, i, j, x) = 0, if ML (V, 
i, j, x) is empty, and H(V, i, j, x) = n+1, 
if MH (V, i, j, x) is empty. 
 

We now describe the algorithm to 
compute a node’s L, ML. The 

computation of H, MH is similar. 
Initially, all values of L are set to 0, all 
values of H are set to n+1, and all values 
of both ML and MH are set to be empty. 
For any leaf node V, do the following: 

L(V, i, j, x) =  max { | }i l j l lt t x≤ ≤ ≤

if L(V, i, j, x) >0 then ML(V, i, j, x) = L(V, i, j, x) 

Let V be a positive node with left 
child Vl, and right child Vr, the following 
routines compute the L and ML values 
for V from the L and ML for Vl, and H 
and MH for Vr. Note that x y is the string 
concatenation of x and y. 

 
/* part 1*/ 

for k = i+1 to j 

for x = 2 to n 

 low = L(Vl, i, k-1, x-1) 

high = H(Vr, k, j, x) 

 if low > 0 or high < n+1 then 

  if low = 0 then low = x 

    if high = n+1 then high = x-1

    if |ML(Vl, i, k-1, x-1)| + |MH(Vr, k, j, x)| > 

|ML(V, i, j, high)| and low > L(V, i, j, 

high)  

then  

       L(V, i, j, high) = low 

       ML(V, i, j, high)   

= ML(Vl, i, k-1, x-1) MH(Vr, k, j, x) 

/*part 2*/ 

best = L(V, i, j,1) 

for x = 2 to n 

if L(V, i, j, x) > best 

best = L(V, i, j, x) 

  else 

  L(V, i, j, x) = best 

  ML(V, i, j, x) = ML(V, i, j, x-1) 



4. The correctness and time 
complexity of the algorithm 

In this section, we prove the correctness 
of our algorithms, and analysis its time 
complexity. 

Lemma 3.1 When the algorithm halts, 
ML(V, i, j, x) is the longest common 
permutation in the match of V into (τi, ... , 
τj) with every matched element of  
(τi, ... , τj) ≤ x and the smallest matched 
element in this match is L(V, i, j, x). 
Proof. This lemma is proved by 
induction. If V is a leaf, the above 
statement is clearly true. Let V be an 
internal node with left child Vl, and right 
child Vr. Without loss of generality, 
assume that V is positive. The case of 
negative node is symmetric. Assume 
that ML and MR  are generated correctly 
for Vl and Vr with respect to all value of 
i, j, and x. There two cases should be 
discussed. Case 1 ML (V, i, j, x) is not 
empty when the part 1 of the algorithm 
is finished. Consider a longest common 
permutation π in the match of V into 
(τi, ... , τj) with every matched element ≤ 
x. It is easy to see that, there exist two 
numbers k and x’, such that π=πl πr, 
where πl is the longest common 
permutation in SML(V, i, k-1, x’-1) with 
the smallest matched element is L(V, i, 
k-1, x’-1), and πr is the longest common 
permutation in SMR(V, k, j, x’) with the 
largest matched element is R(V, k, j, x’).  

Note that in this decomposition, πl or πr 

might be empty. If πl (respectively πr) is 
not the maximum pattern for the given 

intervals of indices and values, then π 

would not be of maximum value, 
contradiction to the definition of π. By 
induction hypothesis, ML (Vl, i, k-1, x’-1) 
= πl, MH (Vr, k, j, x’) = πr and H(Vr, k, j, 
x’) = x. The pattern π will be set to ML 

(V, i, j, x) if L(Vl, i, k-1, x’-1) is larger 
than the L(V, i, j, x), such that the 
permutation stored in ML (V, i, j, x) is the 
longest common permutation in SML(V, i, 
j, x) with the smallest matched element 
in this match is L(V, i, j, x). Case 2, ML 

(V, i, j, x) is empty when the part 1 of 
the algorithm is finished. It is easy to see 
that, there is a number x’< x such that 
the longest common permutation in 
SML(V, i, j, x’) is also in SML(V, i, j, x). 
Note that Best stores the smallest 
matched element in this match. When 
the part 2 is finished, the pattern stored 
in ML(V, i, j, x) is the longest common 
permutation in SML(V, i, j, x’) with the 
smallest matched element in this match 
is L(V, i, j, x’). Thus the proof of this 
lemma is accomplished.   
 

The prove of MR(V, i, j, x) could be 
generate correctly using our algorithm is 
very similar to lemma 1. The correctness 
of our algorithm is proved by the 
following theorem. 
 
Theorem 3.2 The algorithm described 
above outputs the longest common 
permutation correctly. 
Proof. From Lemma 3.1, we know that 
ML (V, i, j, x) and MR (V, i, j, x) could be 
generated correctly under the above 



algorithm. Thus, ML (root, 1, n, n) or MH 

(root, 1,n,1) will be the longest common 
permutation between permutation τ and 
of a separable permutation σ, where root 
is the root of separating tree Tσ of 
permutation σ.                    
 

Finally, the time and space 
complexity of our algorithm is analyzed 
in Theorem 3.3. 
 
Theorem 3.3 The algorithm solves the 
longest common permutation problem in 
O(n6) time using O(n5) space. 
Proof. The algorithm handles arrays ML 

and MR of size O(n5). Each cell contains 
pattern of length at most n. So that the 
total space complexity of this algorithms 
is O(n5). The total time need to fill ML 
and MR for all leaves are O(n4). Since 
there are n leaves, and computing the ML 

and MR values for each leaf requires O(n) 
time for each i, j pair. Since there are 
O(n) internal nodes, and computing ML 

and MR values for an internal node 
requires O(n3) for each i, j pair, then 
computing all ML and MR for all internal 
nodes need O(n6) time. Thus, the 
algorithm solves the longest common 
permutation problem in O(n6) time using 
O(n5) space.                     
 
5. Conclusion and further research 
Bouvel et al. proposed the longest 
common permutation problem and give 
a O(n8) time algorithm to solve it in  
[2]. They ask whether there exists a O(n6) 
time algorithm for this problem as an 

open problem. In this paper, we give a 
O(n6) time algorithm to solve the longest 
common permutation problem, which 
improves the Bouvel’s O(n8) time 
algorithm and answers to Bouvel’s open 
problem. In the future, we will consider 
the longest common permutation in the 
classes of permutations that are less 
restricted than separable permutations, 
and generalize the problem of two 
permutations into the one of k 
permutations. On the other hand, the 
NP-complete result of the longest 
common permutation problem in 
permutations without restriction 
indicates the  invention of 
approximation algorithm for this issue is 
needed. This problem is still open. 
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