
The Longest Common Permutation Problem

Wei-Fu Lu
Department of Bioinformatics, Asia University

Department of Computer Science and Information Engineering, Asia University
weifu@asis.edu.tw

Abstract
A permutation P = (p1, p2, ... , pk) of 1 to k is
called a pattern of the permutation T = (t1,
t2, ... ,tn) of 1 to n, if and only if there is a
length k subsequence T' of T such that the
elements of T' are ordered according to the

permutation P. The longest common
permutation problem is of finding the
longest pattern which is involved in two

permutations π1 and π2. In this paper, we
give a O(n6) time algorithm to find the
longest common permutation between two
permutations when one permutation is
separable. Our results improve the Bouvel’s
O(n8) time algorithm in [2].

Key words: pattern, permutation,
separating tree.

1. Introduction
The longest common permutation
problem can be defined as follows:
Given two permutations π1 and π2, we
want to find the longest pattern which is
involved in π1 and π2. A permutation P
= (p1, p2, ... , pk) of 1 to k is called a
pattern of the permutation T = (t1,
t2, ... ,tn) of 1 to n, if and only if there is
a length k subsequence of T, say T' =

, with i
1 2

(, ,...)
ki i it t t 1 < i2 < ... < ik, such

that the elements of T' are ordered
according to the permutation P, that is,

 <
ri

t
si

t iff pr < ps. If T does contain

such a subsequence, we will say that T
contains P, or that P matches into T. The
longest common permutation problem is
a generalization of the pattern
involvement problem that is to decide
whether P is a pattern matches into T.
The general pattern involvement
problem has shown to be NP-complete
[1], but some polynomial solutions exist
for special kinds of patterns like the
separable ones [1, 4]. A permutation is
separable, if it contains neither the
pattern (2, 4, 1, 3) and (3, 1, 4, 2).

The study of patterns in
permutations has become very active in
the recent years from both combinatorial
and algorithmic research area. Form a
combinatorial point of view, there are
considerable many interested results in
counting the number of permutations T
that do not contain a smaller
permutation P. Knuth [5] showed that
the number of permutations of 1, ... , n
without the pattern (3, 1, 2) is equal to
the nth Catalan number. [6]
considered permutations without the
pattern (2, 1, 3). Rotem [7] considered
permutations without either of the
patterns (2, 3, 1) or (3, 1, 2). Simion and
Schmidt [8] go further, counting the
number of permutations avoiding all the
patterns in any subset of the

Lo vász

permutations on 1, 2, 3. West [9]
showed that the number of separable
n-permutations is the (n-1)-st
number. From an algorithmic point of
view, we want to design algorithms for
general pattern involvement and
common permutation probelm. Bose [1]
gave an algorithm for counting the
number of pattern matching in
permutations with O(kn

Schroder

6) time and
O(kn4) space, when P is separable (the
early version of this paper is in LNCS
709, page 200-209, 1993). Ibarra [4]
improve the Bose’s results in 1993 to get
an algorithm with O(kn4) time and O(kn3)
space. Bouvel [2] proposed the longest
common permutation problem and give
a O(n8) time algorithm. In this paper, we
give a O(n6) time algorithm to find the
longest common permutation between
two permutations based on the work of
[4], when one permutation is separable.

2. Separable permutation and
separating tree

A permutation σ of size n is called
separable if it avoids the patterns 3 1 4 2
and 2 4 1 3 or equivalently if it has a
binary separating tree. A permutation σ
that does not contain π as a pattern is
said to avoid π. A separating tree for a
permutation (p1, ... ,pk) of 1, ... , k is an
ordered binary tree T with leaves
(p1, ... ,pk) in that order, such that for
each node V , if the leaves of the subtree
rooted at V are pi, pi+1,..., pi+j , then the
set of numbers {pi, pi+1,..., pi+j} is a
subrange of the range 1, ... , k. This

subrange is called the range of the node
V. Let Vl be the left child and Vr be the
right child of node V respectively. Node
V is called a positive node we say, if the
range of Vl just precedes the range of Vr,
and V is called a negative node vice
versa. Figure 1 is an example of
separating tree for permutation {3, 4, 2,
1, 6, 5, 7, 8}. Note that the separating
tree need not be unique. For example,
the permutation (4, 5, 3, 1, 2) has the
two separating trees (((4, 5), 3), (1,2))
and ((4, 5), (3, (1, 2))).

3 4 6 812 5 7

+ - +-

+-

+

Figure 1 Separating tree for permutation
{3, 4, 2, 1, 6, 5, 7, 8}.

Consider a well-known result from
graph theory. For any permutation P of
1, ..., n, a graph can be defined with
vertices 1, ..., n and with an edge (i, j)
for i < j iff i appears after j in the
permutation. The graphs formed this
way are permutation graphs. It is easy to
see that a permutation containing the
pattern (3, 1, 4, 2) or (2, 4, 1, 3) is
equivalent to the graph containing an
induced P4. In general, graphs that do
not contain an induced path on 4 vertices
are called P4-free graphs. Thus, the
recognition of separable permutation is
equivalent to the recognition of P4-free

graphs, which can be accomplished in
linear time [3].

3. The Algorithm
In this section, we describe a polynomial
time algorithm for finding a longest
common permutation between two
permutations. The input of our algorithm
is a permutation τ, and a separating tree
Tσ of a separable permutation σ. Our
algorithm uses the dynamic
programming strategy, and defines the
following array should be filled. For
every node V of Tσ, 1 ≤ i ≤ j ≤ n, and 1 ≤
x ≤ n, let SML(V, i, j, x) be the set of
longest common permutations in the
match of V into (τi, ... , τj) with every
matched element of (τi, ... , τj) ≤ x, and
SMR(V, i, j, x) be the set of longest
common permutations in the match of V
into (τi, ... , τj) with every matched
element of (τi, ... , τj) ≥ x. Define L(V, i, j,
x) = max {0} ∪ {y: y is the smallest
matched element of m in SML}, and ML

(V, i, j, x) = the longest common
permutations in SML with the smallest
matched element is L(V, i, j, x).
Similarly, define R(V, i, j, x) = min {n+1}
∪ {y: y is the largest matched element of
m in SMR}, and MR (V, i, j, x) = the
longest common permutations in SMR

with the largest matched element is R(V,
i, j, x). Note that L(V, i, j, x) = 0, if ML (V,
i, j, x) is empty, and H(V, i, j, x) = n+1,
if MH (V, i, j, x) is empty.

We now describe the algorithm to
compute a node’s L, ML. The

computation of H, MH is similar.
Initially, all values of L are set to 0, all
values of H are set to n+1, and all values
of both ML and MH are set to be empty.
For any leaf node V, do the following:

L(V, i, j, x) = max { | }i l j l lt t x≤ ≤ ≤

if L(V, i, j, x) >0 then ML(V, i, j, x) = L(V, i, j, x)

Let V be a positive node with left
child Vl, and right child Vr, the following
routines compute the L and ML values
for V from the L and ML for Vl, and H
and MH for Vr. Note that x y is the string
concatenation of x and y.

/* part 1*/

for k = i+1 to j

for x = 2 to n

 low = L(Vl, i, k-1, x-1)

high = H(Vr, k, j, x)

 if low > 0 or high < n+1 then

 if low = 0 then low = x

 if high = n+1 then high = x-1

 if |ML(Vl, i, k-1, x-1)| + |MH(Vr, k, j, x)| >

|ML(V, i, j, high)| and low > L(V, i, j,

high)

then

 L(V, i, j, high) = low

 ML(V, i, j, high)

= ML(Vl, i, k-1, x-1) MH(Vr, k, j, x)

/*part 2*/

best = L(V, i, j,1)

for x = 2 to n

if L(V, i, j, x) > best

best = L(V, i, j, x)

 else

 L(V, i, j, x) = best

 ML(V, i, j, x) = ML(V, i, j, x-1)

4. The correctness and time
complexity of the algorithm

In this section, we prove the correctness
of our algorithms, and analysis its time
complexity.

Lemma 3.1 When the algorithm halts,
ML(V, i, j, x) is the longest common
permutation in the match of V into (τi, ... ,
τj) with every matched element of
(τi, ... , τj) ≤ x and the smallest matched
element in this match is L(V, i, j, x).
Proof. This lemma is proved by
induction. If V is a leaf, the above
statement is clearly true. Let V be an
internal node with left child Vl, and right
child Vr. Without loss of generality,
assume that V is positive. The case of
negative node is symmetric. Assume
that ML and MR are generated correctly
for Vl and Vr with respect to all value of
i, j, and x. There two cases should be
discussed. Case 1 ML (V, i, j, x) is not
empty when the part 1 of the algorithm
is finished. Consider a longest common
permutation π in the match of V into
(τi, ... , τj) with every matched element ≤
x. It is easy to see that, there exist two
numbers k and x’, such that π=πl πr,
where πl is the longest common
permutation in SML(V, i, k-1, x’-1) with
the smallest matched element is L(V, i,
k-1, x’-1), and πr is the longest common
permutation in SMR(V, k, j, x’) with the
largest matched element is R(V, k, j, x’).

Note that in this decomposition, πl or πr

might be empty. If πl (respectively πr) is
not the maximum pattern for the given

intervals of indices and values, then π

would not be of maximum value,
contradiction to the definition of π. By
induction hypothesis, ML (Vl, i, k-1, x’-1)
= πl, MH (Vr, k, j, x’) = πr and H(Vr, k, j,
x’) = x. The pattern π will be set to ML

(V, i, j, x) if L(Vl, i, k-1, x’-1) is larger
than the L(V, i, j, x), such that the
permutation stored in ML (V, i, j, x) is the
longest common permutation in SML(V, i,
j, x) with the smallest matched element
in this match is L(V, i, j, x). Case 2, ML

(V, i, j, x) is empty when the part 1 of
the algorithm is finished. It is easy to see
that, there is a number x’< x such that
the longest common permutation in
SML(V, i, j, x’) is also in SML(V, i, j, x).
Note that Best stores the smallest
matched element in this match. When
the part 2 is finished, the pattern stored
in ML(V, i, j, x) is the longest common
permutation in SML(V, i, j, x’) with the
smallest matched element in this match
is L(V, i, j, x’). Thus the proof of this
lemma is accomplished.

The prove of MR(V, i, j, x) could be
generate correctly using our algorithm is
very similar to lemma 1. The correctness
of our algorithm is proved by the
following theorem.

Theorem 3.2 The algorithm described
above outputs the longest common
permutation correctly.
Proof. From Lemma 3.1, we know that
ML (V, i, j, x) and MR (V, i, j, x) could be
generated correctly under the above

algorithm. Thus, ML (root, 1, n, n) or MH

(root, 1,n,1) will be the longest common
permutation between permutation τ and
of a separable permutation σ, where root
is the root of separating tree Tσ of
permutation σ.

Finally, the time and space
complexity of our algorithm is analyzed
in Theorem 3.3.

Theorem 3.3 The algorithm solves the
longest common permutation problem in
O(n6) time using O(n5) space.
Proof. The algorithm handles arrays ML

and MR of size O(n5). Each cell contains
pattern of length at most n. So that the
total space complexity of this algorithms
is O(n5). The total time need to fill ML
and MR for all leaves are O(n4). Since
there are n leaves, and computing the ML

and MR values for each leaf requires O(n)
time for each i, j pair. Since there are
O(n) internal nodes, and computing ML

and MR values for an internal node
requires O(n3) for each i, j pair, then
computing all ML and MR for all internal
nodes need O(n6) time. Thus, the
algorithm solves the longest common
permutation problem in O(n6) time using
O(n5) space.

5. Conclusion and further research
Bouvel et al. proposed the longest
common permutation problem and give
a O(n8) time algorithm to solve it in
[2]. They ask whether there exists a O(n6)
time algorithm for this problem as an

open problem. In this paper, we give a
O(n6) time algorithm to solve the longest
common permutation problem, which
improves the Bouvel’s O(n8) time
algorithm and answers to Bouvel’s open
problem. In the future, we will consider
the longest common permutation in the
classes of permutations that are less
restricted than separable permutations,
and generalize the problem of two
permutations into the one of k
permutations. On the other hand, the
NP-complete result of the longest
common permutation problem in
permutations without restriction
indicates the invention of
approximation algorithm for this issue is
needed. This problem is still open.

Reference

[1] P. Bose, J.F. Buss, and A. Lubiw,
Pattern matching for permutations,
Information Processing Letters 65
(1998), no. 5, 277–283.

[2] M. Bouvel and D. Rossin. The
longest common pattern problem for two
permutations. Pure Mathematics and
Applications, 2007. to be published,
arXiv:math.CO/0611679.

[3] D.G. Corneil, H. Lerchs, L. Stewart
Burlingham, Complement-reducible
graphs, Discrete Applied Math. 3,
163-174, 1981.

[4] L. Ibarra, Finding pattern matchings

for permutations, Information [7]D. Rotem, Stack-sortable
permutations, Discrete Math, 33,
185-196, 1981.

Processing Letters 61 (1997), 293–295.

[5] D.E. Knuth, The Art of Computer
Programming, Vol. 1: Fundamental
Algorithms, 2nd edition, Addison-
Wesley, 1973.

[8] R. Simion and F.W. Schmidt,
Restricted permutations, European J.
Combinatorics 6, 383-405, 1985.

[6] L. Lov sz, Combinatorial Problems
and Exercises, North-Holland, 1979.

á [9] J. West, Generating trees and the
Catalan and numbers,
Discrete Math.,146(1-3):247-262,1995.

Schroder

