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Abstract 

Correlation in space and in time is a common 
phenomenon among biological and environmental 
processes. However, in space-time ARMA modeling 
which is a widely used modeling for space-time 
correlated process, there exist some difficulties in the 
modeling procedure, that have impeded practical 
applications since the statistical theory was developed. 
The difficulties include no robust optimization 
algorithm and no appropriate criteria for space-time 
model evaluation. In this paper, a space-time 
extension of Hannan-Rissanen algorithm is suggested 
for accelerating the modeling process and improving 
robustness while optimizing model parameters. This 
study makes the space-time modeling practical. 

Keywords：space-time autoregressive moving 
average model; STARMA; Hannan-Rissanen 
Algorithm;  

Introduction 

Biological and environmental data are often 
organized by units of time as well as by geographic 
locations[4]. The processes that produce such data 
may have strong correlations not only in time but also 
in space. With increasing accessibility and accuracy 
in remote sensing technology, large scale analyses 
and data collection (especially in space) of 
space-time data become possible. This trend 
highlights the importance and necessity of space-time 
analysis in various disciplines. 

The processes in these systems are dynamically 
(and often systemically) self- or inter-correlated in 
space and in time. Analyses considering only time or 

only space may produce misleading results and be 
unable to reveal the dynamical behavior of the system. 
In fact, biological or environmental processes such as 
epidemics, succession, competition, evolution, 
interactions, pollutant spreading, and population 
dynamics, assume that the elements of such a system 
close to one another in space or in time are more 
likely to be affected by the same generating process. 
The lack of spatio-temporally explicit analytical 
framework is considered to be a major obstacle to 
understanding the fundamental mechanisms of such 
processes. 

Spatio-temporal models have gained 
widespread popularity for the last decade. One major 
reason for this is an abundance of new challenging 
applications arising in the environmental sciences and 
epidemiology. Typical examples include forecasting 
of global climate change, infectious disease 
mapping[11], and their inter-relationship[12]. 
Space-time datasets are usually very large and, 
therefore, require substantial computing power for 
modeling. The major advance in computational 
power, especially personal computing, is another 
significant cause for the recent surge in using the 
models.  

The extension of univariate ARMA models into 
the spatial-temporal domain results in a general class 
of models known as Space-Time AutoRegressive 
Moving Average (STARMA) models [1, 8, 11]. 
STARMA models can be used to represent a wide 
range of biological or environmental processes that 
are space-time correlated. In 1980, Pfeifer and 
Deutsch culminated the collective efforts to extend 
the Box-Jenkins approach [1] for time series 
modeling to STARMA modeling [10, 11]. These 
studies also provided a computational basis for 
STARMA modeling and analyses. 
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The three-stage iterative model-building 
philosophy commonly referred to as the Box-Jenkins 
approach [1] for building univariate time series 
models has been adapted for use with STARMA 
models. Pfeifer and Deutsch (1980) [10, 11, 12] were 
among the first to develop space-time modeling 
techniques for lattice spaces in the context of 
STARMA models, and they illustrated the 
model-building details for the identification, 
estimation, and diagnostic checking of the STARMA 
model, using an iterative three-stage procedure.  

 

These models apply to a single random variable 
observable at N fixed sites or locations in space at 
discrete points or periods of time, t = 1; 2; …, T. 
They are of value for descriptive and forecasting 
purposes when the observed system exhibits spatial 
autocorrelation defined by Cliff and Ord [3]: 'If the 
presence of some quality in a county of a country 
makes it presence in neighboring counties more or 
less likely, we say that the phenomenon exhibits 
spatial autocorrelation.' 

Figure 1. Box-Jenkins modeling approach 

 
The classic (1970s) time series analysis [1] uses 

a Box-Jenkins’ approach that is a general procedure 
for modeling and forecasting stationary 
autoregressive and moving average processes. The 
main output from such an approach is a regression 
model explaining current values of the series in terms 
of past values. The coefficients in the model can then 
be used to forecast the series into the future. 

Methods 

According to the definition [11], a general 
space-time autoregressive moving average 
(STARMA) model can be written as: 
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……Equation (1) This approach involves identifying an 
appropriate ARMA model, fitting it to the data, and 
using the fitted model for forecasting. One of the 
attractive features of Box-Jenkins approach for 
forecasting is that ARMA processes are a very rich 
class of possible models. It is usually possible to find 
a model that provides an adequate description for the 
data. The Box-Jenkins approach consists of iterative 
steps of model identification, parameter estimation, 
diagnostic checking and forecasting (as shown in 
Figure 1). Iterations of these steps are then used to 
find increasingly better solutions. 

where  is a N×1 vector 
such that Zi(t) is the state of the interested process 
found in cell i (space) during week t (time). The 
vector  is a random 
noise vector at time t. The parameters p and r are 
respectively the maximum autoregressive temporal 
and spatial orders, and q and s are respectively the 
maximum moving average temporal and spatial 
orders, which are determined by inspection of the 
behavior of the space-time correlations and partial 
space time correlations [11]. The variates 
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klφ  and 

klθ  are respectively the autoregressive and moving 
average parameters at temporal lag k and spatial lag l, 
and these are to be estimated in the modeling process. 
The autoregressive parameters in particular would be 
expected to be functions of the relative rates of direct 
spatial evolution behavior of Z(t). is the N×N 
weight matrix for spatial order l.  has elements 

 that are the weighting contributions of site j to 
site i, and which are nonzero if and only if site i and j 
are l-th order neighbors in space. The weights  
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The method for STARMA modeling in the 
study is based on a space-time extension of the 
Box-Jenkins approach as shown in [11]. However, in 
the step of ‘parameter estimation’ of the modeling 
procedure, it usually costs a lot of computing power 
to find a set of appropriate parameters for a given 
space-time model and a given set of space-time 
observations. Not only this, sometimes does it even 
not converge to any solution at all. Hence, in this 
study, we suggested the improvements on the 
parameter estimation stage. 
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should reflect an ordering of spatial neighbors. Figure 
2 shows an example of a spatial order definition. The 
first order neighbors (corresponding to the 1st order 
weight matrix) are those that are closest to a given 
site (i.e. the small black dot in the center of Figure 2). 
The 2nd order neighbors are farther away from than 
the 1st order neighbors, but closer than the 3rd order 
neighbors. 

1st order 2nd order 3rd order 4th order  

Figure 2. Spatial order definition 

There are three major model types (STAR, 
STMA, and mixed models) defined for general 
STARMA models. A process is said to be a 
Space-Time AutoRegressive process of temporal 
order p and spatial order r if q=0 (named as STAR(p; 
r) as shown in Equation 4), and thereby the set of 
parameters to be estimated is . klφ̂
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Space-Time Moving Average process is of 
temporal order q and spatial order s if p=0 (named as 
STMA(q; s) and shown in Equation 5), and the set of 
parameters to be estimated is . klθ̂
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……Equation (5) 

The mixed model combines both autoregressive 
and moving average effects (if p > 0 and q > 0), and 
is named as Mixed(p; q; r; s) (its mathematical form 
is same as the general form and given by Equation 1). 
Its parameters to be estimated are 

. t
11101110 ]ˆ ,,ˆ ,ˆ ,ˆ ,,ˆ ,ˆ[ˆ

qmp θθθφφφ λ LL=β

STAR and STMA model are popularly used in 
practice. Not only can most practical stochastic 
processes be simply attributed to either STAR or 
STMA, but also there exist primary statistical 
differences between them. For the parameter 
estimation during modeling, there are two categories 
of methods, one is for linear space-time processes (i.e. 
STAR model), the other is for non-linear processes 
(i.e. STMA and mixed models). For the parameter 
estimation of the linear process, the best linear 
estimator can be used and very efficient. But, for the 
non-linear case, it is a time-consuming solution 

searching process for a multi-variate function. 

As mentioned before, the most computing 
intensive part of the modeling procedure is the 
second stage – parameter estimation. We now are to 
make some acceleration for the process. The stage is 
to estimate the parameters in the model identified in 
terms of the model type and orders. In general, 
parameter estimation is to minimize the following 
sum of squared error function (or maximize the 
likelihood function) (Equation 6) to find a set of 
maximum likelihood estimates. The maximum 
likelihood function to be optimized is 
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……Equation (6) 

where T is the number of observations in time, is 

the observation vector at time t, is the random 
error vector at time t, and the parameter vector 

. The problem to 
minimize Equation 6 is a quadratic nonlinear 
optimization problem. 
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For linear models (i.e. STAR), these maximum 
likelihood estimates can be found by applying best 
linear estimators. However, for the nonlinear models 
(i.e. STMA and mixed models), the linear estimator 
above is not appropriate. In this paper, the parameters 
for nonlinear processes are estimated by minimizing 
Equation 6 and searching over a multivariate 
quadratic surface. A quadratic optimization algorithm, 
Marquardt’s algorithm [7], can be used to maximize 
the likelihood function (or minimizing sum of least 
squared errors) and thus to find the parameter 
estimates. Marquardt’s algorithm is a Gauss-Newton 
method based algorithm for quadratic optimization. 
However, as one may commonly encounter in such 
optimization problems, it is important to locate an 
appropriate initial searching point for the 
optimization process. This is especially critical for 
multi-variate nonlinear optimization problems. 
During this research, it was found that if initial 
searching point is not good, the optimization process 
for space-time model parameter estimates, in most 
cases, either converges to local optima (which will 
not be the best solution) or does not converge at all. 
Thus, to avoid reaching a local optima and to reduce 
the number of iterations needed during the 
optimization of the maximum likelihood function, a 
preliminary stage, pre-estimation, is suggested to 
calculate an appropriate starting point for 
Marquardt’s algorithm. 

In this study, univariate Hannan-Rissanen 
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algorithm[5] has been extended to the multivariate 
STARMA series as shown below. The space-time 
extension of Hannan-Rissanen algorithm has three 
iterative steps: 

Step 1. A high order STAR model is fitted to the data 
using the space-time Yule-Walker equations. Then, 
we have the following approximate model 
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where },,0 ;,,1|ˆ{ vlukkl LL ==η are the 
Yule-Walker estimates. 

Step 2. The estimated random noise vectors can be 
found as 
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Step 3. Once the estimated random noise vectors tε̂ , 
t=m+1, …, T, have been found from Equation 3, 
pre-estimates for the model parameters,  
are determined by the least squares linear regression 
of projecting  onto the space {Zt-1, Zt-2, …, Zt-p, 
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By minimizing the sum of squared errors 
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with respect to α̂
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, we can obtain the space-time 
extension of the Hannan-Rissanen estimator as 
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Discussion 

From simulation results, the space-time 
extension of Hannan-Rissanen algorithm is very 
efficient and robust. The deviations of the parameter 
pre-estimates α̂  from the expected values are 
generally lower than 10%. 

This algorithm greatly reduces the possibility 
of converging to a local optima or diverging and 
hence improves the robustness of the modeling 
process. 

Combining with the space-time extensions of 
STARMA model fitness measures, e.g. Akaike’s 
information criterion (AIC) and Bayesian information 
criterion (BIC), we can make the entire modeling 
iterative procedure automatic and accurate. 
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