
A Novel Superquadric Fitting based on Radial Euclidean Distance 
for 3D Objects Fitting 

 
Wu-Chih Hu 

Department of Computer Science and 
Information Engineering, 

National Penghu University 
wchu@npu.edu.tw 

 

Chuan-Yu Chang  
Department of Computer and 
Communication Engineering, 

National Yunlin University of Science & 
Technology 

chuanyu@yuntech.edu.tw 
 
 

Abstract 
 
 Superquadric is a very flexible primitive in 
computer vision, it can represent a variety of 3D 
shapes by varying a few parameters. In this paper, a 
novel superquadric fitting based on radial Euclidean 
distance is proposed to evaluate the parameters of a 
superquadric. In the proposed superquadric fitting 
method, the initial parameters of a superquadric are 
first obtained by using the superellipse fitting method 
based on the geometric properties of the superquadric. 
Once the initial parameters are obtained, the more 
accurate parameters are estimated by using iterative 
procedure involved optimization problem. The 
proposed superquadric fitting method is very useful 
for object representation and recognition. 
Keywords: Superquadric fitting; Radial Euclidean 
distance; Object representation. 
 
1. Introduction 
 
 Visual perception can provide us with information 
and capability that makes it possible to locate and 
recognize objects and their interrelationships without 
direct physical contact. Besides, the 3D object 
recognition is very important in many industrial 
applications and research areas, such as robotics and 
computer vision. Therefore, it is very important to 
seek a meaningful and compact object description for 
computer vision processing. In the 3D object 
description, three main categories (wire frame model, 
cylinder model, and volumetric model) are used 
(Nevatia and Binford, 1977). 
 In wire frame model, a set of lines and their 
relationship are used to describe the object. Because 
the topology of the wire frame model is not specific, 
the further application of object recognition is difficult.  
In cylinder model, the object is described based on the 
reference axis and the planar cross-section which is 
perpendicular to the reference axis. Using cylinder 
model, complex objects are not immediately described 
and these complex objects must be partitioned into 
small and suitable units. In volumetric model, a set of 
solid models and Boolean operators are used to 

describe the object. The geometric information and 
topology of objects would be saved in volumetric 
model. Therefore, using volumetric model is useful for 
the further application of object recognition. 
Superquadric fitting is the volumetric model, and it is 
also the parametric model. Parametric model is one of 
suitable model for computer vision processing which 
has been widely used in computer vision. Furthermore, 
superquadric has powerful capability to represent a 
wide variety of 3D shapes including cuboids, rounded 
cuboids, cylinder, ellipsoids, octahedrons, and pinched 
octahedrons, etc., as shown in Fig. 1. 
 

 
Fig. 1. Various superquadrics (Kindlmann, 2004). 

 
 Superquadric is a very flexible primitive in 
computer vision, and it was popularized in computer 
graphics by Barr (Barr, 1981), and computer vision by 
Pentland (Pentland, 1986). The recovery of parametric 
model (deformable superquadric) was discussed from 
synthesized or real range images by Solina and Bajcsy 
(Solina and Bajcsy, 1990). 
 In superquadric fitting, the least-squares method is 
often used to solve the parameters of the superquadric. 
The least-squares method is one of the well known 
and mostly applied tools in various disciplines of 
science and engineering. The least-squares method 



minimizes the square sum of error-of-fit in predefined 
measures, and two main categories (algebraic fitting 
and geometric fitting) are differentiated by the 
respective definition of the errors between the curve 
and the real data. 
 In algebraic fitting, the superquadric is described 
by implicit equation, and the error is defined as 
deviation of the implicit equation from the expected 
value at each given point (Solina and Bajcsy, 1990; 
Chen, et al., 1997; Liu and Yuan, 2001). The 
computational cost of using algebraic distance is low, 
but the high curvature bias (Rosin and West, 1995) is 
attended to generate drawback in accuracy. That is, the 
error from a data point to the superquadric gives a 
lower estimate near high curvature sections than low 
curvature sections for the same Euclidean distance. 
 In geometric fitting, the error is usually defined 
with the orthogonal distance from the given point to 
the superquadric, and it is also known as the best 
fitting (Wen and Yuan, 2004). Unfortunately, it is 
difficult to solve the associate equations, and it would 
be computationally expensive. 
 Radial Euclidean distance is another case of 
geometric fitting. It is defined as the Euclidean 
distance from the data point to the point on the 
superquadric along the line that passes through the 
data point and the center of the superquadric. Using 
radial Euclidean distance, the high curvature bias can 
be effectively reduced (Rosin and West, 1995), and the 
computational cost is lower than one using orthogonal 
distance. Besides, the objective function based on 
radial Euclidean distance performs much better in the 
experiments than the function based on the implicit 
definition (algebraic distance) in almost all aspects 
including the accuracy and fitting errors of the 
recovered superquadrics, robustness against noise, and 
convergence speed of the data fitting process (Zhang, 
2003). Therefore, radial Euclidean distance is used in 
the proposed superquadric fitting in this paper. 
 In this paper, a novel superquadric fitting based on 
radial Euclidean distance is proposed to evaluate the 
parameters of a superquadric. In the proposed 
superquadric fitting, the initial parameters of the 
superquadric are first obtained by using the 
superellipse fitting. Two independent superellipses are 
found with geometric properties and they are only 
affected by the individual squareness parameter. 
Therefore, parameters of the superquadric can be 
efficiently evaluated by the two independent 
superellipses. The superellipse fitting methods, such 
as 6D optimization method (Rosin and West, 1995), 
moment based method (Voss and Suesse, 1999), area 
based method, diagonal based method, 1D 
optimization method (Rosin, 2000), and 2D 
optimization method (Hu and Sheu, 2001) can all be 
considered to estimate the initial parameters of the 
superquadric. For considering the consistency, 2D 
optimization method is selected in this paper. Once the 
initial parameters are obtained, the more accurate 
parameters are estimated by using iterative procedure 

of Powell's conjugate direction technique (Press et al., 
1992). 
 Besides, limitations contained in this paper are 
summarized as follows. First, only regular 
superquadrics are investigated and deformable 
superquadrics are not addressed. Second, the 3D data 
points of the object surface are obtained by using the 
active machine vision system (Wu and Sheu, 1996), 
which is formed from a laser projector, rotating 
platform, and CCD camera. 
 In the remainder of this paper, review of 2D 
optimization method of superellipse fitting is 
presented in Section 2. In Section 3, the novel 
superquadric fitting is proposed. Section 4 presents 
experimental examples and evaluations of the 
experimental results. Finally, conclusion is made in 
Section 5. 
 
2. Review of 2D optimization method of 

superellipse fitting 
 
 Superellipses are the 2D version of superquadrics. 
Superellipses were first formulated by Gardiner 
(Gardiner, 1965), and curve 
segmentation/representation based on superellipses 
was first proposed by Rosin and West (Rosin and West, 
1995). A superellipse centered on the origin with its 
axes aligned with the coordinate system can be 
represented by the equation (1). 

1)()( 22 =+ εε byax  (1) 
where ε  is called the squareness. A superellipse with 
different values of the squareness ε , it can represent 
a wide variety of 2D shapes such as rounded rectangle, 
ellipse, diamond, pinched diamond, etc. 
 The superellipse fitting methods, such as 6D 
optimization method (Rosin and West, 1995), moment 
based method (Voss and Suesse, 1999), area based 
method, diagonal based method, 1D optimization 
method (Rosin, 2000), and 2D optimization method 
(Hu and Sheu, 2001) can all be considered to estimate 
the initial parameters of the superquadric. 
 The 6 parameters } , , , , ,{ 00 εθ bayx  of a 
superellipse are iteratively estimated in 6D 
optimization method by using the parameters of an 
ellipse as the initial values, thus the computational 
cost is very high, where } ,{ 00 yx  are the center of the 
superellipse, θ  is the orientation, and } ,{ ba  are the 
lengths of the major and the minor axes, respectively. 
 In moment based method, all parameters (except 
for squareness) of a superellipse are estimated by 
using moments, and the squareness is iteratively 
estimated. 
 The minimum bounding rectangle is used in the 
area based method, where the minimum bounding 
rectangle provides all the parameters of a superellipse 
except for the squareness. The squareness is estimated 
by calculating the area of the superelliptical region in 
the image and comparing it against the theoretical area. 
But, the deviation between estimated squareness and 



true squareness is high in the area based method. 
 In diagonal based method, the minimum bounding 
rectangle of the superellipse is first found, and the 
squareness is estimated by the intersection of the 
boundary with diagonal of the minimum bounding 
rectangle. Four estimated the squareness would be 
obtained by four intersection points of the boundary 
with the diagonals, and then the median is taken to 
provide some robustness to noise. 
 The shape of the superellipse is defined as a 
weighted average of an ellipse and a rectangle (for 

10 ≤< ε ) in 1D optimization method. This enables a 
1D search over 10 ≤< ε . Hence, superellipse fitting 
is limited in 10 ≤< ε . 
 For considering the consistency, 2D optimization 
method is selected in this paper. In the first scheme of 
2D optimization method of superellipse fitting, 6 
parameters } , , , , ,{ 00 εθ bayx  of a superellipse are 

evaluated roughly. The zeroth harmonic of Fourier 
descriptor corresponds to the center of the 
approximated contour and the first harmonic of 
Fourier descriptor is an ellipse with the same 
orientation as the one of the approximated contour. 
This research employs this fact to estimate these three 
parameters },,{ 00 θyx . The orientation estimation 
using the consistent symmetric axis method (Sheu, et 
al, 1997) is further explained below. 
 Since the first harmonic of a Fourier descriptor is 
an ellipse with the orientation of the approximated 
superellipse, the consistent symmetric axis method for 
estimating the orientation of an ellipse is exploited. 
Essentially, the method involves first constructing the 
symmetric horizontal axis by connecting the 
midpoints of the horizontal scan line segments inside 
the ellipse, and similarly for the symmetric vertical 
axis. With this approach, the ellipse parameters are 
insensitive to noise and the computational cost is low. 
Consider an ellipse as shown in Fig. 2, where the 
orientation θ  can be estimated from the angles α  
and β  using equation (2), and α  and β  are the 

angles of the symmetric horizontal/vertical axes PQ  

and QP ′′ , respectively. 
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 Once the center and orientation are obtained, the 
lengths of the major and the minor axes },{ ba  can be 
easily estimated based on geometric properties and 
dominant points for 2≤ε  and 2>ε , respectively. 
Finally, the squareness ε  is easy evaluated from 
equation (3) by using the bounding rectangle model as 
shown in Fig. 3. 
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Fig. 2. An ellipse with orientation θ . 
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Fig. 3. The bounding rectangle model. 

 
 In the second scheme of 2D optimization method 
of superellipse fitting, the parameters of a superellipse 
are obtained accurately by using the iterative 
procedure Powell's algorithm (Press, et al., 1992). The 
objective function is defined as equation (4) in the 
iterative procedure. 
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where id  is the Euclidean distance along the line 
passing through the estimated point and the center of 
the superellipse, and n is the number of total points. 
For a superellipse centered on the original with axes 
aligned with the coordinate system, the formulas for 
estimating id  are obtained from equations (5) and 
(6), where ) ,( ii yx  is the estimated point, and 

) ,( ee yx  is the intersection point. 
22 )()( eieii yyxxd −+−=  (5) 
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 The iterative procedure of Powell's algorithm is as 
follows. 
(i) Set the parameters } , , , , ,{ 00 εθ bayx  estimated in 
the first scheme as the initial values. 
(ii) Do a gradient descent by varying the parameter a, 
and ε  is updated by using equation (3). Once the 
minimum of the objective function has been found, 
repeat for the parameter b. 
(iii) Combine the change in the parameters },{ ba  
into a vector and ε  is updated until minimum of the 
objective function is obtained by gradient descent 



along this vector. 
(iv) Repeat from stage (ii) until the change of },{ ba  
is sufficiently small. 
 Only two parameters } ,{ ba  are repeatedly 
estimated in iterative procedure to obtain more 
accurate result. Hence, the superellipse fitting is a 2D 
optimization. 
 A mechanical piece shown in Fig. 4(a) is used to 
evaluate the performance of the 2D optimization 
method of superellipse fitting, and 7 superellipses are 
obtained successfully, as shown in Fig. 4(b). 
 

 
(a) 

 
(b) 

Fig. 4. Superellipse fitting of a mechanical piece. 
 

3. The proposed superquadric fitting 
 
 A superquadric centered on the origin with its axes 
aligned with the coordinate system can be represented 
by the equation (7). 

1)(])()[( 12122222 =++ εεεεε czbyax  (7) 
 Its parametric form is given by equation (8), where 
a, b and c are the scale factors along the x, y, and z 
axes, respectively. 1ε  and 2ε  are called the 
squareness parameters, where 2ε  determines the 
shape of the superquadric cross section parallel to the 
xy plane, while 1ε  determines the shape of the 
superquadric cross section in a plane perpendicular to 
the xy plane. 
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 In the novel superquadric fitting, a two-phase 
scheme is proposed to evaluate 11 parameters 

},,2,1, ,,,,, ,{ 000 zyxcbazyx θθθεε  of a superquadric, 

where }, ,{ 000 zyx  are the center of a superquadric, 
and },,{ zyx θθθ  are the Euler angles of the x, y, and z 
axes, respectively. In the first phase scheme, the initial 
parameters },,2,1, ,,,,, ,{ 000 zyxcbazyx θθθεε  are 
first estimated by using the 2D optimization method of 
superellipse fitting (Hu and Sheu, 2001) with the 
geometric properties of the superquadric. The more 
accurate parameters are estimated by using iterative 
procedure of Powell's conjugate direction technique 
(Press, et al., 1992) in the second phase scheme. 
 Suppose the vertical axis of the superquadric is 
parallel to the z axis, i.e., the superquadric is 
perpendicular to the xy plane, as shown in Fig. 5. In 
the practicality of computer vision measurement, this 
treatment is reasonable. Therefore, Euler angles would 
be 0=== zyx θθθ ; parameter c can be evaluated by 
taking half of the height of the superquadric, and 
parameter 0z  can be obtained by taking the midpoint 
of the two endpoints on the z axis of the superquadric. 
 

 
Fig. 5. A superquadric is perpendicular to the xy 

plane. 
 
 In Fig. 5, two independent superellipses are found 
based on geometric properties and they are only 
affected by the individual squareness parameter. 
Therefore, parameters of the superquadric can be 
efficiently evaluated with the two independent 
superellipses. The superellipse only affected by 2ε  
(indicated as superellipse 2εS , as shown in Fig. 5) is 
obtained from the section of the superquadric by using 
the horizontal plane passing 0z . The parameters of 
superellipse 2εS  would be estimated by using 2D 
optimization method (Hu and Sheu, 2001).  
 The parameters },2,,,,{ 00 xybayx θε  can be 
evaluated by using the first scheme of 2D optimization 
method of superellipse fitting, where xyθ  is the 
orientation in xy plane. When the parameters 

},2,,,,{ 00 xybayx θε  are obtained, the superellipse 



only affected by 1ε  (indicated as superellipse 1εS ) 
can be obtained from the section of the superquadric 
by using the vertical plane passing the center 

), ,( 000 zyx  and rotating xyθ , as shown in Fig. 6. In 

the parameters of superellipse 1εS , only squareness 
parameter 1ε  is not obtained. 
 

 
Fig. 6. The bounding rectangle model of the 

superellipse 1εS . 
 
 The squareness 1ε  can be estimated with a closed 
form solution by modifying the diagonal based 
method (Hu and Sheu, 2001). The closed form 
solution of the squareness 1ε  is described as follows. 
Consider the line segment between the center 

),,( 000 zyxO  and a point on a superellipse along the 

diagonal segment, and let its length be dOQ
~

= , and 

the length of diagonal segment is lcaOP
~22 =+= , 

as shown in Fig. 6. The squareness 1ε  is determined 
by equation (9). 
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 Once the initial parameters of a superquadric are 
obtained, the more accurate parameters are estimated 
by using iterative procedure with the objective 
function. Most superquadric fitting methods for 3D 
objects recover superquadrics from range images by 
minimizing the objective function. The objective 
function plays an important role to measure the 
accuracy of the recovered model. Algebraic fitting is 
often used in superquadric fitting. In algebraic fitting, 
the superquadric is described by implicit equation, as 
shown in equation (10), and the error is defined with 
deviation of the implicit equation from the expected 
value at each given point. 

1)(])()[(),,( 12122222 −++= εεεεε czbyaxzyxF
 (10) 
 ),,( zyxF  is also called the inside-outside 
function because it provides a simple test whether a 
given point lies inside or outside the superquadric. 

0<F , 0=F , and 0>F  imply that the given 
point lies inside the superquadric, on the surface of the 
superquadric, and outside the superquadric, 
respectively. The computational cost of using 

algebraic distance is low, but the high curvature bias 
(Rsoin and West, 1995) is attended to generate 
drawback in accuracy. That is, the error from a data 
point to the superquadric gives a lower estimate near 
high curvature sections than low curvature sections for 
the same Euclidean distance. Therefore, Solina and 
Bajcsy (Solina and Bajcsy, 1990) suggested 
minimizing the equation (11) to find the better 
superquadric fitting with the minimum volume. 

),,( zyxFabc  (11) 
 In geometric fitting, the error is usually defined 
with the orthogonal distance from the given point to 
the superquadric. The geometric fitting is also known 
as the best fitting. Normal vector on the superquadric 
surface must be calculated in the estimation of the 
orthogonal distance. The normal vector nv  at a point 
on the superquadric surface is defined as the equation 
(12). 
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 Unfortunately, it is difficult to solve equation (12) 
for η  and ω  analytically although the values of η  
and ω  that minimize orthogonal distance can be 
determined numerically by walking around the 
superquadric. This would be computationally 
expensive. 
 Radial Euclidean distance is another case of 
geometric fitting. It is defined as the Euclidean 
distance from the data point to the point on the 
superquadric along the line that passes through the 
data point and the center of the superquadric. Using 
radial Euclidean distance, the high curvature bias can 
be effectively reduced (Rosin and West, 1995), and the 
computational cost is lower than one using orthogonal 
distance. Besides, the objective function based on 
radial Euclidean distance performs much better in the 
experiments than the function based on the implicit 
definition (algebraic distance) in almost all aspects 
including the accuracy and fitting errors of the 
recovered superquadrics, robustness against noise, and 
convergence speed of the data fitting process (Zhang, 
2003). Therefore, radial Euclidean distance is used in 
the proposed superquadric fitting in this paper. 
 In the second phase scheme of the proposed 
superquadric fitting, the parameters of a superquadric 
are accurately estimated by using the iterative 
procedure with the objective function defined as 
equation (13). 

∑
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N

i
idNMSE
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where id  is the radial Euclidean distance, as shown 
in Fig. 7, and N is the number of total 3D data points 
of the object surface. For a superquadric centered on 
the original with axes aligned with the coordinate 



system, the formulas for estimating id  are obtained 
from equations (14) and (15), where ), ,( iii zyx  is the 
estimated data point, and ), ,( sss zyx  is the 
intersection point on the superquadric along the line 
that passes through ), ,( iii zyx  and the center of the 
superquadric. 
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Fig. 7. Geometric interpretation of the radial 

Euclidean distance. 
 
 The methods of iterative procedure involved 
optimization problem minimizing the objective 
function can all be considered to use in the second 
phase scheme of the proposed superquadric fitting, 
such as Powell's conjugate direction technique, 
Levenberg-Marquardt algorithm (Press et al., 1992), 
etc. In this paper, Powell's conjugate direction 
technique is selected based on the consistency with 2D 
optimization method of superellipse fitting. 
 In the iterative procedure of Powell's algorithm, 
the parameters },,,{ 0 zyxz θθθ  are obtained by using 

the geometric properties, and },,{ 00 xyyx θ  are 
evaluated by using Fourier descriptors and the 
consistent symmetric axis method, respectively, so 
these parameters },,,,,,{ 000 xyzyx yxz θθθθ  are 
reasonable to keep. Therefore, only the parameters 

}2,1,,,{ εεcba  are repeatedly estimated to minimize 
the objective function. The iterative procedure based 
on Powell's algorithm is as follows. 
(i) Set the parameters 

},,,2,1, ,,,,, ,{ 000 xyzyxcbazyx θθθθεε  estimated in 
the first phase scheme as the initial values. 
(ii) Do a gradient descent by varying the first 
parameter a. Once the minimum of the objective 
function has been found, repeat for the second 
parameter b and so on for the parameters }2,1,{ εεc .  
(iii) Combine the change in the parameters 

}2,1,,,{ εεcba  into a vector and minimize the 
objective function by gradient descent along this 
vector.  
(iv) Repeat from stage (ii) until the change of 

}2,1,,,{ εεcba  is sufficiently small. 
 Only five parameters }2,1,,,{ εεcba  are 
repeatedly estimated in iterative procedure to obtain 
more accurate result. Hence, the proposed superellipse 
fitting is a 5D optimization. 
 
4. Experimental results 
 
 In this section, three real objects are done to 
demonstrate the performance of the proposed 
superquadric fitting. The 3D data points of the object 
surface are obtained by using the active machine 
vision system (Wu and Sheu, 1996) which is formed 
from a laser projector, rotating platform, and CCD 
camera, as shown in Fig. 8. In the setup, a light sheet 
is emitted from a laser projector, a CCD camera is 
used to sense the projected stripe on the object surface, 
and the object is rotated by using the rotating platform. 
The parameters of the camera are determined by the 
technique of vanishing lines (Wang and Tsai, 1991), 
and the parameters of the light sheet are estimated to 
obtain 3D data of the object surface (Wu and Sheu, 
1996). Finally, the proposed 5D optimization method 
of superquadric fitting is used to fit these 3D data 
points. 
 

 
Fig. 8. The active machine vision system. 

 
The number of total lines (light stripes) on object 



surface is set as n360 , where n is the degrees of per 
rotation in rotating platform. In the experiments, n is 
set as 2 degrees, thus the number of total lines on 
object surface is 180. Three real objects (a tea-can, a 
cube-box, and a balloon) are tested, as shown in Figs. 
9(a), 10(a), and 11(a), respectively. The reconstruction 
results of three real objects in arbitrary pose are shown 
in Figs. 9(b), 10(b), and 11(b), respectively. Because 
Figs. 9(a) and 10(a) are the standard shapes of 
superquadrics, the performance of object fitting is 
very good by using the proposed method. Besides, 
traditional superquadric fitting (11D optimization 
method) uses the parameters of an ellipsoid as the 
initial parameters in the iterative procedure involved 
optimization problem, thus the computational cost of 
the proposed 5D optimization of superquadric fitting 
would be lower than the traditional superquadric 
fitting. 
 

       
     (a)      (b) 

Fig. 9. A tea-can fitting and reconstruction. 
 

      
     (a)      (b) 

Fig. 10. A cube-box fitting and reconstruction. 
 

       
     (a)      (b) 

Fig. 11. A balloon fitting and reconstruction. 
 
 Analyzing the results of Figs. 9(b), 10(b) and 11(b), 
the degrees of per rotation in rotating platform would 
affect the resolution of 3D data points of object 
surface. It would also affect the accuracy of 
superquadric fitting. Besides, the deviation of 
superquadric fitting is high for the object with 
asymmetry to the center of the object, as shown in Fig. 
11(a). Therefore, the deformable superquadric (Solina 
and Bajcsy, 1990; Wen and Yuan, 2004) is studied for 
fitting the asymmetric objects. But, the tapering and 
bending parameters (total of additional parameters is 4) 
in the deformable superquadric fitting are considered 

and estimated, and the computational cost would be 
greatly increased. However, the result of the first 
phase scheme of proposed superquadric fitting can be 
used as the initial parameters of deformable 
superquadric fitting to effectively reduce the 
computational cost. 
 
5. Conclusion 
 
 A novel superquadric fitting based on radial 
Euclidean distance for 3D objects fitting is proposed 
successfully. The proposed method is a 5D 
optimization method of superquadric fitting. In the 
proposed superquadric fitting, a two-phase scheme is 
proposed to evaluate 11 parameters of a superquadric. 
In the first phase scheme, the initial parameters are 
first obtained by using the 2D optimization method of 
superellipse fitting with the geometric properties of 
the superquadric. In this paper, two independent 
superellipses are found based on geometric properties 
and they are only affected by the individual 
squareness parameter. Hence, all parameters of the 
superquadric can be efficiently evaluated with the two 
independent superellipses. Furthermore, the more 
accurate parameters are estimated by using iterative 
procedure with Powell's conjugate direction technique 
in the second phase scheme. 
 The computational cost of the proposed 5D 
optimization of superquadric fitting would be lower 
than the traditional superquadric fitting. Furthermore, 
the parameters obtained in the first phase scheme of 
proposed superquadric fitting can be used as the initial 
parameters of deformable superquadric fitting to to 
increase the efficiency. Hence, the proposed 
superquadric fitting would be very useful for object 
representation and object recognition. 
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