
 1

CREATION OF TILE-OVERLAPPING MOSAIC IMAGES FOR INFORMATION HIDING

Tsung-Chih Wang (王宗志)1
and Wen-Hsiang Tsai (蔡文祥)2, 3

1Institute of Multimedia Eng., National Chiao Tung University, Hsinchu, Taiwan
2Dept. of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

3Dept. of Computer Science & Information Eng., Asia University, Taichung, Taiwan
E-mail: vcjump.cs94g@nctu.edu.tw, whtsai@cis.nctu.edu.tw

ABSTRACT

A method for creation of a new-style mosaic

image, called tile-overlapping mosaic image, for the
purpose of information hiding is proposed. Each tile-
overlapping mosaic image is created by varying the
overlapping degrees of the adjacent rectangular
constructing units - tile images. A secret binary data
stream is embedded into a cover tile-overlapping mosaic
image by utilizing the overlapping degrees of adjacent
tile images. And data recovery is accomplished by
detecting the overlapping degree of every pair of
adjacent tile images in the resulting stego-image.
Experimental results show the feasibility of the
proposed method.
Keywords: art image, tile-overlapping mosaic image,
information hiding, covert communication, copyright
protection.

1. INTRODUCTION
Non-photorealistic rendering is a new and

developing domain in computer graphics in recent years.
It can express more esthetic arts than traditional
photorealistic rendering. Using computers to imitate the
skills of painters and their painting styles, we can create
professional paintings in short times. Many methods
have been proposed to create art images in this way [1-
12]. Among them is the mosaic image (also called
photomasaic or image mosaic), which is popular in
today’s prints and videos due to their visual appeal [8]-
[12].

Each mosaic image is composed of numerous
small units – tile images, which are often of similar
shapes or sizes but with different contents. Man-created
mosaic pictures, called tile mosaics, appeared on the
floors or walls of ancient buildings in Greek and Roman

* This work was supported partially by National Digital

Archives Program with Project No. NSC95-2422-H-468-
001 and partially by the NSC under the Project of
Advanced Technologies and Applications for Next
Generation Information Networks (II) – Sub-project 5:
Network Security with Project No. NSC-94-2752-E-007-
001-PAE.

times over 2000 years ago, and are still widely used
today. Creation of mosaic images by computers is a new
research topic in recent years.

Kojima, et al. [8] proposed a top-down approach
that first constructs a quadrilateral mosaic using the
global features, and then incorporated local features,
such as object silhouettes, specified by users into the
existing global mosaic by referring to the dual network
of the mosaic partition. Haeberli [9] used voronoi
diagrams to create mosaic images by placing the tile
image sites at random and filling each region with a
color sampled from the underlying image. Hausner [10]
proposed a method to create mosaic images based on
the use of centroidal voronoi diagram. The method is an
extension of Hoff [11], and utilizes Lloyd’s algorithm
[12] to produce centroidal voronoi diagrams by moving
each seed to the centroid of its voronoi region.

On the other hand, information hiding, which
aims to embed information imperceptibly into given
media, is also a fast-developing area. Many information
hiding techniques have been proposed to embed data
into various forms of media for distinct applications.
Information hiding in images mostly aims at taking the
advantage of the weaknesses of the human visual
system, for example, by changing the least significant
bits of the pixels of a cover image to embed information
[13]. The information embedded into an image can be
used to protect the copyright of the image, convey a
secret message, and so on.

Researches on information hiding can be
classified into three approaches, namely, the spatial-
domain approach, the frequency-domain approach, and
a combination of them [14]. No matter what domains
they belong to, most of the researches are based on
pixel-wise or block-wise operations. Generally speaking,
information hiding in the frequency domain is more
robust than in the spatial domain.

There are yet few studies on hiding information in
art images. Lin and Tsai [15] proposed a method to hide
data in mosaic images by manipulating the four borders
of tile images. Hung, et al. [16] proposed a method to
embed data in tile mosaic images by adjusting the
orientations, sizes, and textures of the tiles. Hsu and

 2

Tsai [17] proposed a method to hide data in circular-
dotted images by a dot overlapping scheme.

In the remainder of this paper, we first introduce
the process of creating tile-overlapping mosaic images
in Section 2. Then, we describe the proposed data
hiding and extraction processes in Section 3. In Section
4, we present the experimental results. Section 5
includes the conclusion with some suggestions for
future works.

2. PROPOSED TILE-OVERLAPPING MOSAIC
IMAGE CREATION PROCESS

In Section 2.1, the adopted mosaic image creation
method is presented. In Section 2.2, the idea of tile-
overlapping mosaic image creation is presented. In
Section 2.3, the detail of the image creation process is
described. And some experimental results are shown in
Section 2.4.

2.1 Adopted Mosaic Image Creation Method
The method proposed by Lin and Tsai [15] for

mosaic image creation is adopted in this study. A
flowchart of it is shown in Figure 1. The creation
process includes two major stages. One is the
construction of a tile image database, and the other is
the generation of mosaic images. The first stage is
conducted off-line, while the second on-line. The tile
image database contains some metadata of the tile
images which are built by a feature extraction process.
The metadata are mainly the descriptions of the color
distributions of the tile images. The mosaic image
generation process aims to divide an input image into
numerous tiles based on a given tiling style.
Additionally, a similarity measure is employed to get
the best-matching image from the tile image database
for each tile of the original image. Finally all the best-
matching tile images are composed together to produce
a mosaic image.

2.2. Idea of Proposed Tile-Overlapping Mosaic
Image Creation
The arrangement of the tile images in a traditional

mosaic image created as described previously is regular
so that we know the location of each tile image in
advance, while in the creation of the proposed tile-
overlapping mosaic image, we randomize the tile
arrangement slightly to create tile overlappings, thus
yielding a more vivid effect in the resulting image
appearance. The randomization is controlled by the use
of a random number generator, therefore, we do not
know the precise location of each tile image beforehand.
This brings a problem of creating holes between
adjacent tiles. Two examples with holes so created are
shown in Figure 2.

This hole-creation problem breaks esthetic feeling
of the resulting image. So, how to avoid creating holes
during the image creation process is a critical issue. A
solution proposed in this study will be described later.
On the other hand, the randomized tile overlapping

degree is limited in this study to be in a specific range
of zero to seven pixels in this study. We utilize such tile
overlapping degrees to implement the data hiding work.

More specifically, we use a tile overlapping
degree of n pixels to embed a 3-bit message data of the
value n. For example, if the message to be embedded is
1012 = 510, then we let a tile image to overlap its
preceding one either in the horizontal or vertical
direction for 5 pixels to accomplish the data embedding
purpose. The image creation and data embedding
processes are stated in the following.

Figure 1 A flowchart of adopted mosaic image
creation method [15].

(a) (b)

Figure 2 Cases of holes creation caused by random
arrangements. (a) Case 1. (b) Case 2.

2.3 Proposed Tile-Overlapping Mosaic Image
Creation Process
The major steps of the proposed tile-overlapping

mosaic image creation process are as follows.
(1) Construct a tile image database.
(2) Process the input image in the following order: the

first column, the first row, and then the inner tiles.
(3) In the first column, draw one by one the best-

matching tile images in such a way that the current
one overlaps randomly the bottom side of the
preceding one.

(4) In the first row, perform works similar to the last

Off Line
Image Database Creation

Extract color features

Represent features

Image

Metadata table

On Line
Mosaic Image Generation

Original
image

Divide original image
into tiles

Get the best matching
image for each tile

Mosaic image

Extract color features
of each tile image

Put tile images together

DB

Resize the image

 3

step but with the overlapping being on the right
side of the preceding tile image.

(5) Draw the inner tile images in a raster scan order in
such a way that the current tile image overlaps, in
a random way, both the right side of the left tile
image and the bottom side of the upper one.
In the above process, a best-matching tile image

drawn at a location is the one in the tile image database,
which is most “similar” to the image part appearing at
the same location (called target image subsequently) in
the input image (called cover image in the sequel). Also
in the last step above, the random overlappings there, as
mentioned previously, might create holes, which we
want to eliminate. A technique to achieve this purpose
is to move the tile to be drawn toward the left or upper
direction pixel by pixel until the hole disappears. More
details of the process are as follows.

Algorithm 1: creation of a tile-overlapping mosaic
image.
Input: a cover image I; a tile image database DB with

each image being of a pre-determined size Z×Z;
a similarity measure SM, and a random number
generator F for integers in the range of 0 to 7.

Output: a tile-overlapping mosaic image Im for I.
Steps:
Step 1. Create the first column of Im in the following

way:
1.1. Crop the upper-leftmost Z×Z subimage of I and

take it to be the target image Tar00.
1.2. Search DB for the tile image Bmt00 which best

matches Tar00 according to the given similarity
measure SM.

1.3. Draw Bmt00 in Im at the same position as that of
Tar00 with a black border.

1.4. Generate a random integer number RN by F in
the range of 0 to 7.

1.5. Crop as a target image Tar0j from I a Z×Z
image right below the preceding target image
Tar0(j-1) but with an RN-pixel overlapping.

1.6. Search DB for the tile image Bmt0j which best
matches Tar0j according to SM.

1.7. Draw Bmt0j in Im at the same position as that of
Tar0j with a black border.

1.8. Repeat Steps 1.4 through 1.7 until the entire
first column of Im are processed.

Step 2. Draw the tile images of the first row of Im in a
similar way to Step 1 except that each
overlapping is on the right side of the
preceding tile image.

Step 3. Draw the inner tile images of Im in a raster scan
order in the following way:

3.1. Generate by F two random integer numbers
RN1 and RN2 ranging from 0 to 7.

3.2. Derive the position of Tarij using RN1 and RN2,
which is to the right of the horizontally
preceding target image Tar(i-1)j in Im with an
RN1-pixel horizontal overlapping and below
the vertically preceding target image Tari(j-1)

with an RN2-pixel vertical overlapping.
3.3. Check in the following way if a hole like either

case shown in Figure 2 is created by Tarij in
the last step.
Case 1:
1a. the vertically preceding target image Tari(j-

1) has its upper boundary higher than that
of the upper-left neighboring target image
Tar(i-1)(i-1); and

1b. there is a gap between the upper boundary
of Tar(i-1)j and the lower boundary of
Tari(j-1); and

1c. there is a gap between the right boundary
of Tar(i-1)(j-1) and the left boundary of Tarij.

Case 2:
2a. the vertically preceding target image Tari(j-

1) has its upper boundary lower than that
of the upper-left neighboring target image
Tar(i-1)(i-1);

2b. there is a gap between the right boundary
of Tar(i-1)j and the left boundary of Tari(j-1);

2c. there is a gap between the lower boundary
of Tar(i-1)(j-1) and the upper boundary of
Tarij.

If a hole of Case 1 is created, move Tarij to the
left until the hole disappears, and crop a Z×Z
target image from I at the new position as Tarij;
or if a hole of Case 2 is created, move Tarij
upward until the hole disappears, and crop a
Z×Z target image from I at the new position as
Tarij

3.4. Search DB for the tile image Bmtij which best
matches Tarij according to SM.

3.5. Draw Bmtij in Im at the same position as that of
Tarij with a black border.

3.6. Repeat Steps 3.1 through 3.5 until all the inner
tile images of Im are created.

2.4 Some Experimental Results
All the mosaic images of our experimental results

were generated from the use of a tile image database
with about 1900 images. Figure 3(a) is an input image.
Figure 3(b) is the resulting tile-overlapping mosaic
image created from Figure 3(a) by applying Algorithm
1. Figure 3(c) is an enlarged image composed of several
tile images enclosed by the red region shown in Figure
3(b).

3. PROPOSED METHOD FOR DATA HIDING IN
TILE-OVERLAPPING MOSAIC IMAGES

 4

In Section 3.1, the idea of the proposed data
hiding and extraction methods will be introduced. And
in Sections 3.2 and 3.3, the proposed detailed data
hiding and extraction algorithms will be described.

3.1. Concept of Proposed Method
The main concept of the proposed data hiding

method in a tile-overlapping mosaic image is to utilize
the overlapping degree of every pair of adjacent tile
images as a secret data embedding location. More
specifically, we derive a randomized bit sequence from
the input secret message using a secret key, and then
embed every 3-bit data of the bit sequence in order into
the tile-overlapping mosaic image created from a given
image to obtain a stego-tile overlapping mosaic image.
The embedding work is done during the mosaic image
creation process.

The data extraction process is an inverse version
of the hiding process. We extract the value of the
overlapping degree between each pair of adjacent tile
images in a stego-tile-overlapping mosaic image and
apply a data recovery process to obtain the hidden bit
sequence. The details are described in the following.

3.2. Proposed Data Hiding Process
Before data hiding in a tile-overlapping mosaic

image, we process the input image in advance. If the
RGB values of a pixel in the image are (0, 0, 0) or (1, 1,
1), we replace them with the RGB values (0, 0, 1); the
two colors (0, 0, 0) and (1, 1, 1) are reserved specially
for use in the data extraction process.

The data hiding process essentially is to take in
order 3-bit sequences from the prefix of a randomized
version of the secret message as overlapping degree
values and run Algorithm 1 to embed them into the
created tile-overlapping mosaic image.

In case a hole is created using a certain
overlapping degree, we have to eliminate the hole by
adjusting the horizontal or vertical position of the tile
with respect to its left or upper tile image, respectively,
as mentioned previously. But then the overlapping
degree is changed, meaning that the originally
embedded 3-bit sequence is changed such that the
embedding must be abandoned. This says equivalently
that if we have to adjust the position of some tile image
in one direction (horizontal or vertical) to avoid creating
a hole, the overlapping in this direction should not be
used to hide secret data anymore. In such a case, the
overlapping on the other direction is tried, or the next
tile image should be used if the overlappings of both
directions are unusable.

In addition, data extraction to be described later is
conducted in a raster scan order; the tile image, denoted
by RT, to the right of the currently-processed one,
denoted by CT, will be the next to be processed for data
extraction. We access RT along a line drawn from the
center of CT to the right. Therefore, to assure the
accessibility of RT in this way, we limit the center of RT
to be located within a range RA (e.g., −3 pixels to +10
pixels for 32×32 tile images in this study) with respect
to the center of CT both in the horizontal and in the
vertical directions. Furthermore, similar to the case of
hole elimination, when the position of RT is adjusted in

(a)

(b)

(c)

Figure 3 Experimental results. (a) An original image. (b)
A tile-overlapping mosaic image. (c) Enlarged
image part of red region in (b).

 5

either the horizontal or the vertical direction due to this
range limitation, it means that the overlapping in that
direction cannot be used for data embedding.

When the position of RT needs to be adjusted due
to hole elimination or/and RT accessibility as mentioned
above, we say that the position is illegal. We move
repetitively an RT with an illegal position horizontally
or/and vertically for a random distance in the range RA
mentioned above as done in Algorithm 1. The random
distance is generated by a random number generator.
Note that both hole elimination and RT accessibility
must be accomplished, when necessary.

Furthermore, if secret data cannot be embedded in
the horizontal (or vertical) direction, we draw as a mark
the left and right (or upper and lower) borders with the
color value of (1, 1, 1). Contrastively, for those
overlappings into which secret data are embedded, the
respective borders are drawn with the color value of (0,
0, 0). In this way, by detecting the color of a tile image
border, we know whether a 3-bit sequence is hidden in
the tile image or not. The detail of the data hiding
process is described as an algorithm in the following.

Algorithm 2: Data hiding in a tile-overlapping
mosaic image.
Input: a cover image I, a secret message Mes, a secret

key K and a similarity measure SM.
Output: a stego-tile-overlapping mosaic image S.
Steps:
Step 1. Derive a random bit sequence DData from Mes

and K by the following steps:
1.1. Use K to generate a random bit sequence Kseq

with its length equal to that of Mes.
1.2. Perform the bitwise exclusive-OR operation to

Kseq and Mes to generate a third bit sequence
KM.

1.3. Append an end signal of 16 consecutive bits of
0’s to the end of KM and take the result as the
desired sequence of DData.

Step 2. Embed bits of DData sequentially into the first
column of S by performing Step 1 of Algorithm
1 except in Step 1.4, instead of generating the
integer RN by a random number generator, take
sequentially 3 bits from the prefix of DData
and transform them into an integer for use as
the RN in performing the step.

Step 3. Embed the leading remaining bits of DData into
the first row of S in a way similar to the
previous step.

Step 4. Embed the remaining bits of DData in order
into the inner tile images of S in a raster scan
order in the following way.

4.1. Try to embed 3-bit data into the horizontal
overlapping of the target image Tarij in the
following way.
4.1.1 Take 3 bits from the prefix of DData,

transform them into an integer number
RN1, and create another integer number
RN2 = 0.

4.1.2 Derive the horizontal and vertical
positions of Tarij by running Step 3.2 of
Algorithm 1 with RN1 and RN2 as input.

4.1.3 Check if the horizontal position of Tarij is
legal or not. If legal, go to Step 4.3;
otherwise, continue.

4.1.4 Change the position of Tarij by moving it
to the left or right until the horizontal
position of Tarij becomes legal (with the
horizontal overlapping abandoned for
data embedding).

4.2. Try to embed 3-bit data represented by RN1
into the vertical overlapping of Tarij in the
following way.
4.2.1 Move Tarij upward with RN1 pixels (with

the intention to embed the 3 bits forming
RN1 into the vertical overlapping), and
check if the vertical position of Tarij is
legal or not. If legal, go to Step 4.4;
otherwise, continue.

4.2.2 Change the position of Tarij by moving it
upward or downward until the vertical
position of Tarij becomes legal (with the
vertical overlapping abandoned for data
embedding), and transform RN1 back into
the original 3-bit data and attach them
back to DData as its prefix.

4.2.3 Go to Step 4.4.
4.3. Try to embed 3-bit data into the vertical

overlapping of Tarij in the following way.
4.3.1 Take 3 bits from the prefix of DData and

transform then into an integer number
RN2.

4.3.2 Derive the position of Tarij by moving it
upward for RN2 pixels.

4.3.3 Check if the vertical position of Tarij is
legal or not. If legal, go to Step 4.4;
otherwise, continue.

4.3.4 Change the position of Tarij by moving it
upward or downward until the vertical
position of Tarij becomes legal (with the
vertical overlapping abandoned for data
embedding), and transform RN2 back into
the original 3-bit data and attach them
back to DData as its prefix.

4.4. Run Steps 3.4 and 3.5 of Algorithm 1 to create
a best-matching tile image and draw it in S.

4.5. Repeat Steps 4.1 through 4.4 until all bits in
DData are embedded.

Step 5. Run Step 3 of Algorithm 1 until all the
remaining inner tile images of S are created
(with no secret data embedded in the tile
images created in this step).

3.3. Proposed Data Extraction Process
The main concept of the data extraction process is

to figure out the horizontal and vertical overlappings of
the tile images in a stego-tile-overlapping mosaic image

 6

and extract the secret bits represented by the
overlapping degree values. Because we replace pixel
color values (0, 0, 0) and (1, 1, 1) with the value (0, 0, 1)
in advance, there will be no pixel with values (0, 0, 0)
or (1, 1, 1) except on the borders. We judge whether a
bit is hidden or not by two colors of these borders. After
the extraction process, we get the randomized bit
sequence DData from which we can recover the
embedded message using the original secret key K. The
detail of the data extraction process is described as an
algorithm as follows.

Algorithm 3: data extraction process.
Input: a stego-tile-overlapping mosaic image S and a

secret key K.
Output: a secret message Mes.
Steps:
Step 1. Find the vertical overlappings of the tile images

in the first column of S by the following way.
1.1. From the center of T0j, scan downward pixel by

pixel until meeting a pixel P with color values
(0, 0, 0) or (1, 1, 1).

1.2. Derive the overlapping degree value O by
subtracting the vertical position of P from that
of the lower border of T0j.

1.3. Transform O to into a 3-bit sequence.
1.4. Repeat Steps 1.1 through 1.3 until the entire

first column of S are processed.
Step 2. Process the first row in a similar way to the last

step to derive the horizontal overlapping values
and their corresponding 3-bit sequences.

Step 3. Find the horizontal and vertical overlappings of
the inner tiles in a similar way to the last two
steps.

Step 4. Concatenate all the extracted 3-bit sequences in
order into a longer sequence, search in it to find
the end signal composed of 16 consecutive bits
of 0’s, and truncate them and the bits after them
to form a bit sequence DData.

Step 5. Generate a random bit sequence Kseq using the
secret key K as an input to run the random
number generator F identical to that used in
Algorithm 2, perform the exclusive-OR
operation to DData and Kseq, and take the
result as the desired secret message Mes.

4. EXPERIMENTAL RESULTS

Figure 4 shows some experimental results of the
proposed data hiding in a tile-overlapping mosaic image.
Figure 4(a) is an original image. Figure 4(b) is a tile-
overlapping mosaic image with the secret message,
“baboon,” embedded. Figure 4(c) is the secret message
extracted from Figure 4(b) with a correct key. Figure
4(d) shows the secret message extracted from Figure
4(b) with a wrong key. Figure 5 shows another
experimental result. From these results, we see that the
hidden message is unnoticeable to an observer, and so
the proposed method is effective.

5. CONCLUSIONS

Methods for tile-overlapping mosaic image
creation and data hiding have been proposed, which are
based on the use of horizontal and vertical tile image
overlappings tile images. The created new-style mosaic
image is more vivid in appearance. Data hiding in such
mosaic images has the effect of steganography. The
problem of hole creation has been solved. Algorithms
for data hiding and extractions have also been proposed.
Good experimental results show the effectiveness of the
proposed methods. The proposed data hiding methods
may be used for various applications, such covert
communication, copyright protection, etc. There are still
some interesting topics which are worth further studies.
For example, we can produce mosaic images with other
shapes and select appropriate image features to achieve
corresponding data hiding works.

REFERENCES

[1] Y. W. Guo, J. H. Yu, X. D. Xu, and Q. S. Peng,
“Example based painting generation,” Journal of
Zhejiang University: Science, Vol 7, No 7, pp.
1152-1159, July 2006.

[2] G. C. Chen, “Automatic generation of pencil
sketching with the effects of paper texture,” M. S.
Thesis, Department of Computer and Information
Science, National Chiao Tung University, Hsinchu,
Taiwan, Republic of China, June 2006.

[3] B. Baxter, V. Scheib, M. C. Lin, and D. Manocha,
“DAB: interactive haptic painting with 3D virtual
brushes,” Proceedings of. SIGGRAPH 01, pp. 461-
468, Aug. 2001.

[4] Von Laerhoven, Tom and Van Reeth, Frank, “Real-
time simulation of watery paint,” Computer
Animation and Virtual Worlds, Vol 16, No 3-4, pp.
429-439, July 2005.

[5] A. Hertzmann, “Painterly rendering with curved
brush strokes of multiple sizes,” Proceedings of
SIGGRAPH 98, pp. 453-460, Orlando, Florida,
USA, July 1998.

[6] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W.
Fleischer, and D. H. Salesin, “Computer-generated
watercolor,” Proceedings of SIGGRAPH 97, pp.
421-430, Los Angeles, California, USA, August
1997.

[7] U. N. Chen, “Non-photorealistic 3D rendering in
Chinese painting style,” M. S. Thesis, Department
of Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan,
Republic of China, July 2003.

[8] K Kojima, S Takahashi, T Nishita, “Creating
quadrilateral mosaics from image topographic
features,” Proceedings of the 3rd symposium on
Applied perception in graphics and visualization,
2006.

[9] Paul E. Haeberli, “Paint by numbers: abstract image
representations,” Proceedings of SIGGRAPH 90,
pp. 207-214, August 1990.

 7

[10] Alejo Hausner, “Simulating decorative mosaics,”
Proceedings of SIGGRAPH 01, pp. 573-580, New
York, USA, 2001.

[11] Hoff, K., Keyser, J., Lin, M., Manocha, D. and
Culver, T. “Fast computation of generalized
voronoi diagrams using graphics hardware,”
Proceedings of SIGGRAPH 99, pp. 277-286,
August 1999.

[12] S. P. Lloyd, “Least square quantization in PCM,”
IEEE Transactions on Information Theory, vol. IT-
28, no. 2, pp. 129-137, March 1982.

[13] D. C. Wu and W. H. Tsai, “A steganographic
method for images by pixel-value differencing,”
Pattern Recognition Letters, Vol. 24, No. 9-10, pp.
1623-1636, 2003.

[14] Y. C. Chiu and W. H. Tsai, “Copyright protection
by watermarking for Color Images against Rotation
and Scaling Attacks Using Peak Detection and
Synchronization in Discrete Fourier Transform
Domain,” Proceedings of Third Workshop on
Digital Archives Technologies, pp. 207-213, Taipei,
Taiwan, August 5-6, 2004

[15] W. L. Lin and W. H. Tsai, “Data hiding in image
mosaics by visible boundary regions and its
copyright protection application against print-and-
scan attacks,” Proceedings of 2004 International
Computer Symposium (ICS 2004), Taipei, Taiwan,
Dec. 2004.

[16] S. C. Hung, T. Y. Liu and W. H. Tsai, “A new
approach to automatic generation of tile mosaic
images for data hiding applications,” Proceedings
of 2005 Conference on Digital Contents
Management & Applications (DCMA 2005), pp.
11-20, Kaohsiung, Taiwan, June 2005.

[17] C. Y. Hsu and W. H. Tsai, “Creation of a new type
of image - circular dotted image - for data hiding by
a dot overlapping scheme,” Proceedings of 19th
Conference on Computer Vision, Graphics and
Image Processing, Taoyuan, Taiwan, August 2006.

(a)

(b)

(c)

(d)

Figure 4 An experimental result of data hiding in a tile-
overlapping mosaic image. (a) Original image.
(b) Tile-overlapping mosaic image with a
secret message “baboon” embedded (c) Secret
message extracted from (b) with a correct key.
(d) Secret message extracted from (b) with a
wrong key.

 8

(a)

(b)

(c)

(d)

Figure 5 Another experimental result of data hiding in a
tile-overlapping mosaic image. (a) Original image. (b)
Tile-overlapping mosaic image with a secret message
embedded. (c) Secret message extracted from (b) with a
correct key. (d) Secret message extracted from (b) with
a wrong key.

