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Abstract

For two vertices X, Y ∈ V (G), a cycle is called

a geodesic cycle with X and Y if a shortest path

joining X and Y lies on the cycle. A graph G

is called to be geodesic k-pancyclic if any two

vertices X, Y on G have such geodesic cycle of

length l that 2dG(X, Y ) + k ≤ l ≤ |V (G)|.
In this paper, we show that the n-dimensional

Möbius cube MQn is geodesic 3-pancyclic for

n ≥ 3. This result is near optimal because there

is no geodesic 1-cycle with two adjacent vertices

in MQn.

Keywords: geodesic pancyclic, Möbius cubes,

panconnected, pancyclic, shortest path.

1 Introduction

Interconnection networks are essential for paral-

lel and distributed computing. A ring structure

is often used as a interconnection architecture for

local area network and as a control and data flow

structure in distributed networks due to its good

properties. To carry out a ring-structure algo-

rithm on a specific multicomputer or a distributed

system, the processes of the parallel algorithm

need to be mapped to the nodes of the intercon-

nection network in the system such that any two

adjacent processes in the ring are mapped to two

adjacent node of the network. For this purpose,

it is desired that the targeted interconnection net-

work posses a hamiltonian cycle, i.e., a cycle that

passes every node of the network exactly once

if the number of processes in the ring-structure

parallel algorithm equals the number of nodes of

the interconnection network. When the number

of processes is less than the number of nodes of

the network, the pancyclic property of the net-

work with n nodes is desired, that is, there exists

a cycle of length l in the network for each inte-

ger l with 4 ≤ l ≤ n. The hypercube is one of

the most popular interconnection networks since

it has simple structure and is easy to implement.
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Möbius cubes form a class of hypercube variants

that give better performance with the same num-

ber of edges and vertices [2]. Cull et al. [2]

proved that the n-dimensional Möbius cube, de-

noted by MQn, has several better properties than

the n-dimensional hypercube, denoted by Qn, for

example, the diameter of MQn is about one half

that of Qn and graph embedding capability of

MQn is better than Qn.

With regard to the pancyclicity of Möbuis

cubes, many related results have received con-

siderable attention [3, 4, 5, 7, 10, 12, 13]. Fan

[3] showed that an n-dimensional Möbius cube

is pancyclic. Xu et al. [10] proved that an n-

dimensional Möbius cube is edge-pancyclic, that

is, every edge lies on a cycle of length l for

each integer l with 4 ≤ l ≤ n. Hu et al.

[7] found that an n-dimensional Möbius cube is

node-pancyclic, that is, every node lies on a cy-

cle of length l for each integer l with 4 ≤ l ≤
n. As concerns the fault-tolerant pancyclicity of

Möbius cubes, Hsieh and Chen [4] proved that an

n-dimensional Möbius cube with up to n−2 edge

faults is pancyclic. After, Yang et al. [13] pro-

posed that an n-dimensional Möbius cube is pan-

cyclic in the presence of up to n−2 faulty nodes.

When concerns pancyclicity of Möbius cubes in

the presence of faulty nodes and/or edges, Yang

et al. [12] proved that an n-dimensional Möbius

cube is still pancyclic even if it has up to n − 2

node and/or edge faults.

Here, we consider the geodesic cycle em-

bedding problem that have been studied in [1, 6,

8] in Möbius cubes. In other words, for any two

vertices, we want to find all the possible lengths

of cycles including a shortest path joining them.

A graph G is called geodesic k-pancyclic if any

two vertices X, Y on G have such geodesic cycle

of length l that 2dG(X, Y ) + k ≤ l ≤ |V (G)|
where dG(X, Y ) is the distance from X to Y in

G. Hsu et al. [6] proved that an n-dimensional

Augmented cube contains a geodesic pancyclic

of length from max{2d(X, Y ), 3} ≤ l ≤ 2n.

Lai et al. [8] proposed that an n-dimensional

Crossed cube is geodesic 4-pancyclic. In this pa-

per, we prove that MQn is geodesic 3-pancyclic

for n ≥ 3.

This paper is organized as follows. In Sec-

tion 2, we give some definitions and properties of

Möbius cubes. In Section 3, we prove that MQn

is geodesic 3-pancyclic. The final section con-

cludes this papers.

2 Möbius cubes

Let the interconnection network be modeled by

an undirected graph G = (V, E) where the set

of vertices V (G) represents the processing ele-

ments of the network and the set of edges E(G)

represents the communication links. Through-

out this paper, for the graph theoretic defini-

tions and notations we follow [9]. Two ver-

tices are adjacent when they are incident with

a common edge. A path of length k from X

to Y is a finite sequence of adjacent vertices



written as 〈X1, X2, . . . , Xk+1〉, where X1 = X ,

Xk+1 = Y , and all the vertices X1, X2, . . . , Xk+1

are distinct except possibly X1 = Xk+1. For

convenience, we use the sequence 〈X1, . . . , Xi,

P (Xi, Xj), Xj, . . . , Xk+1〉 to denote the path

〈X1, X2, . . . , Xk+1〉, where P (Xi, Xj) = 〈Xi,

Xi+1, . . ., Xj〉 and the two vertices Xi and Xj

are called the end-vertices of P (Xi, Xj). We call

that P (Xi, Xj) is a sub-path of the path from X

to Y . Sometimes, we also use P to denote a path

P (Xi, Xj). Let l(P (Xi, Xj)) denote the length

of the path P that is the number of edges in P .

The distance between X and Y in G is denoted

by dG(X, Y ), which is the length of a shortest

path between X and Y in G. A cycle C is a spe-

cial path with at least three vertices such that the

first vertex is the same as the last one. A cycle of

length k is called a k-cycle. A path (respectively,

cycle) which traverses each vertex of G exactly

once is hamiltonian path (respectively, hamilto-

nian cycle).

The n-dimensional Möbius cube MQn,

proposed first by Cull and Larson [2], consists

of 2n vertices and each vertex has a unique n-

component binary vector for an address. Each

vertex has n neighbors as follows. A vertex

X = x1x2 . . . xn connects to its ith neighbor,

denoted by Ni(X), for 2 ≤ i ≤ n, Ni(X) =

x1x2 . . . xi−1xixi+1 . . . xn if xi−1 = 0 or Ni(X)

= x1x2 . . . xi−1xixi+1 . . . xn if xi−1 = 1.

For i = 1, since there is no bit on the left of

x1, N1(X) can be defined as the first neighbor of
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Figure 1. (a) A 0-type 4-dimensional Möbius
cube. (b) A 1-type 4-dimensional Möbius cube.

X can be denoted as x1x2 . . . xn or x1x2 . . . xn.

If we assume that the zeroth bit of every ver-

tex of MQn is 0, we call the network a 0-type

n-dimensional Möbius cube, denoted by MQ0
n;

and if we assume that the zeroth bit of every ver-

tex of MQn is 1, we call the network a 1-type

n-dimensional Möbius cube, denoted by MQ1
n.

Either MQ0
n or MQ1

n may be denoted by MQn.

The example of MQ0
4 and MQ1

4 are shown in

Fig 1.

Therefore, MQn is an n-regular graph and

can be recursively defined as follows: Both MQ0
1

and MQ1
1 are complete graph K2 with one ver-

tex labeled 0 and the other 1. MQ0
n and MQ1

n

are both composed of a sub-Möbius cube MQ0
n−1

and a sub-Möbius cube MQ1
n−1. Each vertex



X = 0x2x3 . . . xn−1xn ∈ V (MQ0
n−1) connects

to 1x2x3 . . . xn−1xn ∈ MQ1
n−1 in MQ0

n and

to 1x2x3 . . . xn−1xn in MQ1
n. For convenience,

we say that MQ0
n−1 and MQ1

n−1 are two sub-

Möbius cubes of MQn, where MQ0
n−1 (respec-

tively, MQ1
n−1) is an (n− 1)-dimensional 0-type

Möbius cube (respectively, 1-type Möbius cube)

which includes all vetices 0x2x3 . . . xn−1xn (re-

spectively, 1x2x3 . . . xn−1xn), xi ∈ {0, 1}.

Let ei be the n-dimensional (0, 1) vector

with only its ith component equal to 1. Let Ei be

the n-dimensional (0, 1) vector with ith through

nth components equal to 1. Let {Z2}n be the n-

dimensional vector space over {0, 1} with addi-

tion and scalar multiplication mod 2. It is clear

that both {ei | 1 ≤ 1 ≤ n} and {Ei | 1 ≤ i ≤ n}
are bases for this space. Hence {ei, Ei | 1 ≤ i ≤
n} forms a redundant basis for this vector space.

Any vector X can be represented as a linear sum

of these basis vectors:

X =
n∑

i=1

(αiei + βiEi), (1)

where αi ∈ {0, 1} and βi ∈ {0, 1}. Clearly,

we can represent a vector X by the set of vectors

ei, Ei that have nonzero coefficients in the above

sum. For any vertex X in MQn, the ith neighbor

of X , Ni(X), is formed by X + ei if xi−1 = 0, or

X + Ei if xi−1 = 1. It is clearly that every vertex

X of MQn can be formulated as the above sum.

Definition 1 [2] A set S of ei, Ei, where 1 ≤ i ≤
n, is an expansion of X if and only if the equality

in (1) is true, where αi = 1 if and only if ei ∈ S

and βi = 1 if and only if Ei ∈ S. Also, any t ∈ S

is called a term of this expansion of X .

Because we are using a redundant basis,

there can be more than one expansion of a vec-

tor. For a vector X , the weight of an expansion

S of X is the cardinality of set S, denoted by |S|
and a minimal expansion of X is an expansion

with least weight.

Lemma 1 Let X be a vertex of MQ0
n with n ≥ 3

and Y = Ni(X). Then dMQ0
n
(N1(X), N1(Y )) =

1 if 3 ≤ i ≤ n and dMQ0
n
(N1(X), N1(Y )) = 2 if

i = 2.

Proof. Let X = x1x2 . . . xi−1xixi+1 . . . xn

where xj ∈ {0, 1} for 1 ≤ j ≤ n.

Since Y is an ith neighbor of X , Y =

x1x2 . . . xi−1xixi+1 . . . xn if xi−1 = 0 or Y =

x1x2 . . . xi−1xixi+1 . . . xn if xi−1 = 1.

Case 1: i = 2.

Suppose that x1 = 0. Then, N1(X) =

1x2x3 . . . xn and N1(Y ) = 1x2x3 . . . xn. By

definition, dMQ0
n
(N1(X), N1(Y )) > 1. If

x2 = 0, N1(Y ) + E3 = 1x2 x3 . . . xn.

Hence N1(Y ) + E3 + E2 = 1x2x3 . . . xn.

Hence dMQ0
n
(N1(X), N1(Y )) = 2. If x2 =

1, N1(X) + E3 = 1x2x3 . . . xn. Hence

N2(X) + E3 + E2 = 1x2x3 . . . xn. Therefore,

dMQ0
n
(N1(X), N1(Y )) = 2.

Suppose that x1 = 1. Then, N1(X) =

0x2x3 . . . xn and N1(Y ) = 0x2x3 . . . xn. By

definition, dMQ0
n
(N1(X), N1(Y )) > 1. If



x2 = 0, N1(Y ) + E3 = 0x2x3 . . . xn.

Hence N1(Y ) + E3 + e2 = 0x2x3 . . . xn.

Hence dMQ0
n
(N1(X), N1(Y )) = 2. If x2 =

1, N1(X) + E3 = 0x2x3 . . . xn. Hence

N1(X) + E3 + e2 = 0x2x3 . . . xn. Therefore,

dMQ0
n
(N1(X), N1(Y )) = 2.

Case 2: 3 ≤ i ≤ n.

Suppose that xi−1 = 0. N1(X) =

x1x2 . . . xi−20xi . . . xn and N1(Y ) = x1x2

. . . xi−20xixi+1 . . . xn. It is obvious that N1(Y )+

ei = N1(X). Hence dMQ0
n
(N1(X), N1(Y )) = 1.

Suppose that xi−1 = 1. N1(X) =

x1x2 . . . xi−21xi . . . xn and N1(Y ) = x1x2

. . . xi−21xi . . . xn. It is obvious that N1(Y ) +

Ei = N1(X). Hence dMQ0
n
(N1(X), N1(Y )) = 1.

The lemma is proved.

Lemma 2 Let X be a vertex of MQ1
n with n ≥ 3

and Y = Ni(X). Then dMQ1
n
(N1(X), N1(Y )) =

1 if i = n and dMQ1
n
(N1(X), N1(Y )) = 2 if 2 ≤

i ≤ n − 1.

Proof. Let X = x1x2 . . . xi−1xixi+1 . . . xn

where xj ∈ {0, 1} for 1 ≤ j ≤ n.

Since Y is an ith neighbor of X , Y =

x1x2 . . . xi−1xixi+1 . . . xn if xi−1 = 0 or Y =

x1x2 . . . xi−1xixi+1 . . . xn if xi−1 = 1.

Case 1: 2 ≤ i ≤ n − 1.

Suppose that xi−1 = 0. N1(X) =

x1x2 . . . xi−21xi . . . xn and N1(Y ) = x1

x2 . . . xi−2 1xixi+1 . . . xn. By definition,

dMQ0
n
(N1(X), N1(Y )) > 1. If xi = 0, N1(X) +

Ei+1 = x1x2 . . . xi−21xixi+1 . . . xn. Hence

N1(X) + Ei+1 + Ei = x1x2 . . . xi−21xixi+1

. . . xn. Hence dMQ0
n
(N1(X), N1(Y )) = 2. If

xi = 1, N1(Y ) + Ei+1 = x1x2x3 . . . xi−21xixi+1

. . . xn. Hence N1(Y ) + Ei+1 + Ei = N1(X).

Therefore, dMQ0
n
(N1(X), N1(Y )) = 2.

Suppose that xi−1 = 1. N1(X) =

x1x2 . . . xi−20xi . . . xn and N1(Y ) =

x1x2 . . . xi−2 0xixi+1 . . . xn. By definition,

dMQ0
n
(N1(X), N1(Y )) > 1. If xi = 0,

N1(X) + Ei+1 = x1x2 . . . xi−20xixi+1 . . . xn.

Hence N1(X) + Ei+1 + ei = N1(Y ). Hence

dMQ0
n
(N1(X), N1(Y )) = 2. If xi = 1, N1(Y ) +

Ei+1 = x1x2 . . . xi−20xixi+1 . . . xn. Hence

N1(Y ) + Ei+1 + ei = N1(X). Therefore,

dMQ0
n
(N1(X), N1(Y )) = 2.

Case 2: i = n.

N1(X) = x1x2 . . . xn−2xn−1xn and

N1(Y ) = x1x2 . . . xn−2xn−1xn. It is ob-

vious that N1(Y ) + en = N1(X). Hence

dMQ0
n
(N1(X), N1(Y )) = 1.

Cull and Larson [2] proposed an algorithm

to generate a minimal expansion of a vector of X

using only components xi through xn as S(X, i)

for 1 ≤ i ≤ n.

Algorithm S(X, i)

Input: A vector X and an integer i with 1 ≤ i ≤
n.

Output: A minimal expansion of X using com-

ponents xi through xn.

begin



if X = () then return empty set.

if X = (1) then return {Ei}.

if X = (0X
′
) then return S(X

′
, i + 1).

if X = (10X
′
) then return {ei}∪S(X

′
, i+

2).

if X = (11X
′
) then return {Ei}∪S(X ′, i+

2).

end

Lemma 3 [2] The ”greedy” algorithm given in

correctly produces a minimal expansion of X , by

computing S(X, 1).

Lemma 4 [2] Let X and Y be two vertices of

MQn, and S be a minimal expansion of X + Y

produced by the ”greedy” minimal expansion al-

gorithm. Then dMQn(X, Y ) = |S| or |S| + 1.

Lemma 5 Let X and Y be two distinct

vertices in MQn. Then dMQn(X, Y ) =

dMQn(N1(X), N1(Y )) ±k where k = 0, 1.

Proof. Let X = x1x2 . . . xn and Y =

y1y2 . . . yn. Also let S be a minimal expansion

of X + Y produced by the ”greedy” minimal ex-

pansion algorithm. It is observed that e1 and E1

doesn’t be contained in S. Suppose that X and

Y are in MQ0
n. Hence N1(X) = x1x2 . . . xn

and N1(Y ) = y1y2 . . . yn. Suppose that X and

Y are in MQ1
n. First neighbors of X and Y are

N1(X) = x1x2 . . . xn and N1(Y ) = y1y2 . . . yn,

respectively. One may observe that X + Y =

N1(X) + N1(Y ). Consequently, S is a minimal

expansion of N1(X) + N1(Y ). By Lemma 4, we

have that dMQn(X, Y ) = |S| or dMQn(X, Y ) =

|S| + 1, and dMQn(N1(X), N1(Y )) = |S| or

dMQn(N1(X), N1(Y )) = |S| + 1. Therefore,

dMQn(X, Y ) = dMQn(N1(X), N1(Y ))± k where

k = 0, 1.

Lemma 6 Let X and Y be two vertices in the

same sub-Möbius MQi
n−1 of MQn with i = 0, 1.

Then every shortest path Ps(X, Y ) joining X and

Y in MQn satisfies that all vertices on Ps(X, Y )

belong to MQi
n−1.

Proof. Without loss of generality, we

assume that X and Y are two vertices in MQ0
n−1.

Let Ps(X, Y ) be a shortest path joining X and Y

in MQn. Suppose that there exists a sub-path of

Ps(X, Y ) in MQ1
n−1. Let Ps(X, Y ) is formed by

〈X, Ps(X, U), U, W, Ps(W, Z), Z, S, Ps(S, Y ), Y 〉
where W = N1(U), Z = N1(S), and Ps(W, Z)

lies on MQ1
n−1. Hence U, S ∈ V (MQ0

n−1).

Since the path Ps(X, Y ) is a short-

est path joining X and Y in MQn, the

path 〈U, W, Ps(W, Z), Z, S〉 is a shortest

path between U, S in MQn. Therefore,

dMQn(U, S) = dMQn(W, Z) + 2. Since

W = N1(U), Z = N1(S), and by Lemma 5,

dMQn(U, S) = dMQn(W, Z) ± k where k = 0, 1.

This is contradiction. Consequently, there is no

sub-path of Ps(X, Y ) in MQ1
n−1. The lemma

follows.

Lemma 7 Let X ∈ V (MQi
n−1) and Y ∈

V (MQ1−i
n−1) be two vertices in MQn. Then there



exists a shortest path Ps(X, Y ) joining X and Y

forms of 〈X , N1(X), Ps(N1(X), Y ), Y 〉 or 〈X ,

Ps(X, N1(Y )), N1(Y ), Y 〉 where Ps(X, N1(Y ))

in MQi
n−1 and Ps(N1(X), Y ) in MQ1−i

n−1.

Proof. Let S be a minimal expansion

of X + Y produced by the ”greedy” minimal

expansion algorithm. Assume that the lowest

index term in S has index i. It is clearly that

routing along any edge (X, X + tj), j > i

doesn’t affect bit xi and routing along any edge

(X, X + tj), j < i doesn’t lead to minimal path

from X to Y where tj ∈ S. So the shortest

path algorithm must eventually rout along only

one of the edges (Z, Z + ei) or (Z, Z + Ei) for

some vertex Z on the path between X and Y .

Since X ∈ V (MQi
n−1) and Y ∈ V (MQ1−i

n−1),

X = x1x2x3 . . . xn and Y = x1y2y3 . . . yn.

Hence the lowest index term of S has index 1.

Therefore, an exact minimal routing algorithm

given in [2] can determine a shortest path

Ps(X, Y ) between X and Y such that Ps(X, Y )

forms of 〈X, N1(X), Ps(N1(X), Y ), Y 〉 or

〈X, Ps(X, N1(Y )), Y 〉 where Ps(X, N1(Y )) in

MQi
n−1 and Ps(N1(X), Y ) in MQ1−i

n−1. The

lemma follows.

A graph G is panconnected if each pair of

distinct vertices X and Y are joined by a path

of length l where dG(X, Y ) ≤ l ≤ |V (G)| −
1. The following panconnected property of MQn

are useful in the proof of next section.

Lemma 8 [11] If n ≥ 3 then for any two distinct

vertices X and Y in MQn, there exists a path of

every length from dMQn(X, Y ) + 2 to 2n − 1.

The diameter D(G) of G is the maximal

value of distances between all pairs of vertices

in G. It is clearly that D(MQ3) = 2.

Lemma 9 [2] The diameter of the n-

dimensional Möbius cube MQn is D(MQ0
n) =

�n+2
2
	 for n ≥ 4 and D(MQ1

n) = �n+1
2
	 for

n ≥ 1.

3 MQn is geodesic 3-pancyclic

Definition 2 Let G be a graph. For two vertices

X, Y ∈ V (G), a cycle is called a geodesic cycle

with X and Y if a shortest path joining X and Y

lies on the cycle. A geodesic l-cycle with X and

Y in G, denoted by gC l(X, Y ; G), is a geodesic

cycle of length l.

Definition 3 Let G be a graph. For two ver-

tices X, Y ∈ V (G), they are called geodesic k-

pancyclic on X and Y if for every integer l satis-

fying 2dG(X, Y )+ k ≤ l ≤ |V (G)|, the geodesic

cycle gC l(X, Y ; G) exists.

Definition 4 The graph G is called geodesic k-

pancyclic if any distinct two vertices on G are

geodesic k-pancyclic on them. The geodesic-

pancyclicity of G, denoted by gpc(G), is defined

as the minimum integer k such that G is geodesic

k-pancyclic.

This section is dedicated to illustrating

the geodesic pancyclic property of Möbius



cubes. We first propose that MQ3 is geodesic

2-pancyclic. Finally, we prove that 2 ≤
gpc(MQn) ≤ 3 for n ≥ 4.

Lemma 10 MQ3 is geodesic 2-pancyclic.

Proof. Since MQ0
3 and MQ1

3 are iso-

morphic, we only prove the case of MQ0
3. Since

MQ3 is vertex-transitive. We assume that X =

000 and consider Y as the four cases: (1) Y ∈
{100, 010}, (2) Y = 001, (3) Y = {110, 111},

and (4) Y ∈ {101, 011}. By the symmetry of

MQ3, there is only one vertex is discussed for

each case and related geodesic cycles are listed

as Table 1.

Theorem 1 MQn is geodesic 3-pancyclic for

n ≥ 3.

Proof. The theorem is proved by induc-

tion on n. By Lemma 10, MQ3 is geodesic 2-

pancyclic. This implies that MQ3 is geodesic 3-

pancyclic. The theorem holds for n = 3. As-

sume that the theorem is true for every integer

3 ≤ m < n. We now consider m = n as follows.

Let X and Y be two vertices in MQn. By the

relative position of X and Y , the proof is divided

into two parts: (1) X and Y are in the same sub-

Möbius MQi
n−1 and (2) X ∈ V (MQi

n−1) and

Y ∈ V (MQ1−i
n−1) for i = 0, 1.

Case 1: X, Y ∈ V (MQi
n−1) for i = 0, 1.

Let dMQn(X, Y ) = d. Without loss

of generality, we may assume that X, Y ∈
V (MQ0

n−1). By the induction hypothesis, we

X

Y

N (X)1

N (Y)1

Ps(X,Y)
Pc(N1(Y),N1(X))

MQ 0
n-1 MQ 1

n-1(a)

W

P (X,Y)s

X

P (W,X)c

N (Y)1

P (N (Y),N (W))c 1 1

MQ 0
n-1 MQ 1

n-1

Y

N (W)1

(b)

Figure 2. Two examples for case 1 of Theorem 1

have the geodesic cycle gC l(X, Y ; MQ0
n−1) for

all 2dMQ0
n−1

(X, Y )+3 ≤ l ≤ 2n−1. By Lemma 6,

dMQn(X, Y ) = dMQ0
n−1

(X, Y ) = d. There-

fore, the geodesic cycle gC l(X, Y ; MQn) for all

2d + 3 ≤ l ≤ 2n−1 follows.

We now construct the geodesic cycle

gC l(X, Y ; MQn) for all 2n−1 + 1 ≤ l ≤
2n−1. By Lemma 5, dMQ1

n−1
(N1(X), N1(Y )) =

dMQn(N1(X), N1(Y )) = d or d + 1. By

Lemma 8, there exists a path of 〈N1(Y )

,Pc(N1(Y ), N1(X)), N1(X)〉 in MQ1
n−1 where

d + 3 ≤ l(Pc(N1(Y ), N1(X)) ≤ 2n−1 − 1.

Let cycle C = 〈X , Ps(X, Y ), Y , N1(Y ),

Pc(N1(Y ), N1(X)), N1(X), X〉. Then, 2d + 5 ≤
l(C) ≤ 2n−1 + d + 1. Since d ≤ D(MQn−1),

2d + 5 ≤ 2n−1 + 1 for n ≥ 4. Therefore,

the geodesic cycle gC l(X, Y ; MQn) exists where

2n−1 + 1 ≤ l ≤ 2n−1 + d + 1. (See Figure 2 (a).)

It is difficult to prove that the geodesic

cycle gC5(X, Y : MQ3) exists for any X, Y

in MQ3. Since 2n − 3 > 2 × D(MQn) +

3 for n ≥ 4, there exists the geodesic cy-

cle gC2n−3(X, Y ; MQn) on any two distinct

vertices X and Y in MQn for n ≥ 3.

Let gC2n−1−3(X, Y ; MQ0
n−1)=〈X , Ps(X, Y ), Y ,



Table 1. Summary of the geodesic cycles with X = 000 and Y in MQ0
3.

Y geodesic cyclic (even length) geodesic cyclic (odd length)
100 〈000, 100, 101, 001, 000〉 〈000, 100, 111, 011, 010, 000〉
100 〈000, 100, 111, 110, 101, 001, 000〉 〈000, 100, 101, 110, 111, 011, 001, 000〉
100 〈000, 100, 111, 011, 001, 101, 110, 010, 000〉
001 〈000, 001, 011, 010, 000〉 〈000, 001, 011, 111, 100, 000〉
001 〈000, 001, 011, 111, 110, 010, 000〉 〈000, 001, 011, 111, 110, 101, 100, 000〉
001 〈000, 001, 011, 111, 100, 101, 110, 010, 000〉
110 〈000, 010, 110, 111, 100, 000〉
110 〈000, 010, 110, 111, 011, 001, 000〉 〈000, 010, 110, 111, 100, 101, 001, 000〉
110 〈000, 010, 110, 101, 001, 011, 111, 100, 000〉
011 〈000, 001, 011, 010, 000〉 〈000, 001, 011, 111, 100, 000〉
011 〈000, 001, 011, 111, 110, 010, 000〉 〈000, 001, 011, 111, 110, 101, 100, 000〉
011 〈000, 001, 011, 111, 100, 101, 110, 010, 000〉

Pc(Y, X), X〉 where l(Ps(X, Y )) = d. Let W

and Y be two adjacent vertices on Pc(Y, X).

Hence Pc(Y, X) = 〈Y, W, Pc(W, X), X〉 where

W = Nj(Y ) for some j. Since W =

Nj(Y ) for some 2 ≤ j ≤ n and by

Lemma 5, dMQn(N1(Y ), N1(W )) ≤ 2. By

Lemma 8, there exists a path of 〈N1(Y ),

Pc(N1(Y ), N1(W )), N1(W )〉 in MQ1
n−1 where

4 ≤ l(Pc(N1(Y ), N1(W ))) ≤ 2n−1 − 1.

Let cycle C = 〈X , Ps(X, Y ), Y, N1(Y ),

Pc(N1(Y ), N1(W )), N1(W ), W, Pc(W, X), X〉.
Then 2n−1 + 3 ≤ l(C) ≤ 2n − 3. Since d ≥
1, we have the geodesic cycle gC l(X, Y ; MQn)

for all 2n−1 + d + 2 ≤ l ≤ 2n − 3 with

format C. (See Figure 2 (b).) Similarly, the

geodesic cycle gC2n
(X, Y ; MQn) for all 2n −

2 ≤ l ≤ 2n may be obtained if the geodesic

cycle gC2n−1
(X, Y ; MQ0

n−1) is used in the con-

struction method. Hence, this case holds.

Case 2: X ∈ V (MQi
n−1) and Y ∈ V (MQ1−i

n−1)

for i = 0, 1.

Without loss of generality, let X ∈
V (MQ0

n−1) and Y ∈ V (MQ1
n−1). According to

relationship of X and Y , the proof of this case is

divided into two parts: (1) Y = N1(X), i.e., X

and Y are adjacent. (2) Y 
= N1(X), i.e., X and

Y are not adjacent.

Subcase 2.1 Y = N1(X).

By Lemma 1-2, Nn(Y ) and Nn(X) are

adjacent. By Lemma 8, any path of 〈Nn(Y ),

Pc(Nn(Y ), Y ), Y 〉 exists in MQ1
n−1 where 1, 3 ≤

l(Pc(Nn(Y ), Y ) ≤ 2n−1 − 1 and there exists a

path of 〈X , Pc(X, Nn(X)), Nn(X)〉 in MQ0
n−1

where 1, 3 ≤ l(Pc(X, Nn(X)) ≤ 2n−1 − 1. Let

cycle C = 〈X , Pc(X, Nn(X)), Nn(X), Nn(Y ),

Pc(Nn(Y ), Y ), Y, X〉. Then 4, 6 ≤ l(C) ≤
2n. By Lemma 1-2, dMQn(Y, N1(N2(X)) =

2, the geodesic cycle gC5(X, Y ; MQn) can be

found. Hence, we have the geodesic cycle

gC l(X, Y ; MQn) for all 4 ≤ l ≤ 2n.

Subcase 2.2 Y 
= N1(X).

By Lemma 7, without loss of general-
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Figure 3. Two examples for subcase 2.2 of Theo-
rem 1

ity, we may assume there exists a shortest

path Ps(X, Y ) with format of 〈X , N1(X),

Ps(N1(X), Y ), Y 〉 where Ps(N1(X), Y ) is a

shortest path joining N1(X) and Y in MQ1
n−1

(See Figure ?? (a)). Let dMQn(X, Y ) = d. Hence

dMQn(N1(X), Y ) = d − 1. By Lemma 5, we

have that dMQn(X, N1(Y )) = d − 1 or d. By

Lemma 8, there exists a path Pc(N1(Y ), X) in

MQ0
n−1 where d + 2 ≤ l(Pc(N1(Y ), X)) ≤

2n−1 − 1. Let cycle C = 〈X , Ps(X, Y ), Y ,

N1(Y ), Pc(N1(Y ), X), X〉. Then, 2d + 3 ≤
l(C) ≤ 2n−1 + d. Consequently, there exists the

geodesic cycle gC l(X, Y ; MQn) for all 2d+3 ≤
l ≤ 2n−1 + d with format C.

We now construct the geodesic cycle

gC l(X, Y ; MQn) for all 2n−1 + d + 1 ≤ l ≤ 2n

(See Figure ?? (b)). By the induction hypothe-

sis, the geodesic cycle gC l(N1(X), Y ; MQ1
n−1)

for all 2(d − 1) + 3 ≤ l ≤ 2n−1 exits. It is ob-

served that for any two distinct vertices A, B in

MQn with n ≥ 3, the cycle gC2n−2(A, B; MQn)

exists. Let gC2n−1−2(N1(X), Y ; MQ1
n−1) =

〈N1(X), Ps(N1(X), Y ), Y , Pc(Y, N1(X)),

N1(X)〉. Let W be the adjacent vertex of

N1(X) on Pc(Y, N1(X)). Hence Pc(Y, N1(X))

= 〈Y , Pc(Y, W ), W , N1(X)〉. By Lemma 1-

2, dMQn(X, N1(W )) ≤ 2. By Lemma 8,

there exists a path Pc(N1(W ), X) in MQ0
n−1

where 4 ≤ l(Pc) ≤ 2n−1 − 1. Let cycle

C = 〈X , N1(X), Ps(N1(X), Y ), Y, Pc(Y, W ),

W, N1(W ), Pc(N1(W ), X), X〉. Then the length

of cycle C is l(Ps(N1(X), Y )) + l(Pc(Y, W ))

+ l(Pc(N1(W ), X)) + 2. It is obvious that

2n−1 + 3 ≤ l(C) ≤ 2n − 2. Since d ≥ 2,

there exists the geodesic cycle gC l(X, Y ; MQn)

for all 2n−1 + d + 1 ≤ l ≤ 2n − 2. Sim-

ilarly, the geodesic cycle gC2n−1(X, Y ; MQn)

and gC2n
(X, Y ; MQn) may be obtained if the

geodesic cycle gC2n−1
(N1(X), Y ; MQ1

n−1) is

used in this construction method. Hence, this

case holds.

It is well known that there is no triangle cy-

cle in MQn. Therefore, there is no geodesic 1-

cycle with two adjacent vertices in MQn. Hence

gpc(MQn) ≥ 2. Then the following corollary

holds.

Corollary 1 The geodesic-pancyclicity of MQn

is gpc(MQ3) = 2 and 2 ≤ gpc(MQn) ≤ 3 for

n ≥ 4.

4 Conclusions

In this paper, we demonstrate that for any

two vertices X and Y in MQn for n ≥ 3,

there exists a geodesic l-cycle on them where

2dMQn(X, Y ) + 3 ≤ l ≤ 2n. We show that

2 ≤ gpc(MQn) ≤ 3 for n ≥ 3. This result is

near optimal because there is no geodesic 1-cycle



with two adjacent vertices in MQn. We have a

conjecture that gpc(MQn) = 2 because not all

pair of vertices X and Y does not exist a path of

length dMQn(X, Y ) + 1 between them.
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