
 1

混合式多處理器系統可程式度之改善

A Programmability Improving Scheme for Hybrid Multiprocessor

Architectures

摘要摘要摘要摘要

多處理機系統的可程式度對於程式設計者而

言，是個普遍面臨到的重要議題。使用多核心處

理器的運算節點所連結而成的叢集電腦，是一個

包含訊息傳遞與記憶體分享架構的混合式多處理

機系統，而這樣的系統也將會隨著多核心處理器

的流行越顯普遍。本篇論文提出了在混合式多處

理機系統下的可程式度改善之方法。論文中提出

了一套以 SUIF 為基礎的編譯系統，能將使用 C 程

式語言所撰寫的循序式程式轉換成適用於混合式

多處理機系統下進行平行處理的程式。而最後的

實驗結果，也顯示出此套編譯系統的可運行性並

能提升程式執行的效能。此篇論文也提出了一個

加強型 MPICH 多重通訊協議裝置，可以增進此裝

置在分享式記憶體通訊模式下的頻寬表現。

關鍵詞: 可程式度、迴圈轉換、混合式多處理器
系統

Abstract

The programmability of a multiprocessor

system is generally recognized to be the major issue

confronting designers. A PC cluster with multi-core

computing nodes to form a Hybrid Multiprocessor

System which consists of both message passing and

shared memory multiprocessing will become popular.

The proposed SUIF-based compiler system with

software methodologies for improving the

programmability of a hybrid multiprocessor has been

built to transform the sequential program which is

written in C language to running in parallel.

Moreover, an enhanced MPICH multi-protocol device

has also been proposed, and it can improve the

bandwidth when using the MPICH multi-protocol

device with shared memory communication mode.

The experimental results show that the proposed

system is workable and has a better performance.

Keywords : Programmability, Loop Transformation,

Hybrid Multiprocessor Architecture

1. Introduction

 In scientific or commercial application is

demand huge computing power to execute tasks. The

multiprocessing architecture is the better solutions of

improving the computing power for parallel

computing. This system can operate tasks at the same

time on difference process units. The classification of

the multiprocessing architecture can be divided in

accordance with different ways, such as the symmetry

of the processor, the type of instruction and data

streams and the processor coupling. However, it is not

difficult to use this multiprocessing architecture to

improve the computing power with the prevalence of

the PC cluster [1] [2] [3]. In recent years, with the

emergence of the multi-core processor constructed

personal computer, the performance of the PC cluster

can further be improved.

Multi-core processor (MCP), chip-level

multiprocessing (CMP), has become more popular.

There will be more and more PC clusters made up of

CMP or SMP computers. The mixed model called 2-

level Hybrid Multiprocessing Architecture (2LHMA).

There is 2-level memory architecture, the one is the

shared memory (SM) and the other one is distributed

memory (DM). The most existing automatic

parallelizing compilers are designed for SM, but the

DSM libraries stilly have the problem of inefficiency

[8] [9].

Different multiprocessing architectures have different

methods to write parallel program. According to the

memory architecture, the SM can adopt the threading

technique, and the DM can use the message passing

technique. There are two methods to write parallel

programs with message passing technique. The one is

the parallel program such as Fortran D [2] or HPF [3].

The other is the sequential program in the

implementation mostly used MPI or PVM [6].

Nevertheless, this is a hindrance for general users,

some the automatic parallelizing compilers have

proposed to reduce the threshold, e.g. Polaris [7], PGI

PGF77/PGCC and JAVAR-KAI and so forth, for the

SM. The DSM library such as Bert 77,

李良德

Liang-Teh Lee

大同大學資訊工程系

ltlee@ttu.edu.tw

張鴻源

Hung-Yuan Chang

大同大學資訊工程系

hychang@ntist.edu.tw

林秋旺

Chiu-Wang Lin

大同大學資訊工程系

g9406013@ms2.ttu.edu.tw

劉岡遠

Kang-Yuan Liu

大同大學資訊工程系

d9306005@ms2.ttu.edu.tw

潘昆祺

Kun-Chi Pan

大同大學資訊工程系

g9506039@ms2.ttu.edu.tw

 2

PARAGUIN/PARADIGM, PGI PGHPF, and VAST-

HPF etc allows programmers to write parallel

program with SM programming style on the DM.

In this paper, we propose a SUIF-based automatic

parallelizing compiler system for handling the C

language. A sequential program can be transformed to

a parallelable one for running on HMA without

considering the problem of what type of the memory

system is. This hybrid memory model will use the

message passing as the communication foundation,

and each core in cluster is regarded as an independent

processing unit. These units will exchange data by

MPICH. In order to reduce the communication time,

units that belong to the same computers can just use

local memory for exchanging data by using the MPI

shared-memory device. Therefore, an Enhanced MPI

Multi-Protocol Device (EMPIMPD) proposed to

handle the communication of inter-node and intra-

node, respectively.

This paper is organized as follows: Section 2 is

relative work to describe some knowledge of

techniques. Our approach for constructing an

automatic parallelizing compiler system will present

in section 3. Section 4 introduces the environment of

the experiment to set up and show the experimental

results. Finally, concluding remarks and future

direction are given in section 5.

2. Related Work

Loop Transformation (LT) means to restructure

the loop of the source code. The actions of LT are

unrolling the loop, iterations separated and regrouped,

and mapping into processing units. LT can be

regarded as a set of optimizations and have three

purposes. First, it can increase the degree of the

parallelism in a source code [11] [12]. Second, it can

utilize the advantage of the locality concept

effectively. Third, it can reduce the required

communication or synchronous time [13]. However,

we need to analyze the data dependence in the source

code before restructuring in order to avoid something

wrong due to data dependence.

The Stanford University Intermediate Format version

2 (SUIF2) can be described as two major parts: the

front-end and the back-end. The front-end consist of

lexical analysis, syntax analysis, semantic analysis,

and generation of the SUIF intermediate format file.

In the back-end, the operations are code optimization

and code generation. SUIF2 compiler system, first,

gives full supports of handling the SUIF intermediate

format file, next allows user to develop new modules

or compiler passes according to their specific

requirements, final supports in current programming

languages such as FORTRAN, C, C++ and Java.

3. Design and Implementation

3.1 System Model

The concepts of proposed automatic

parallelizing compiler system designed for high-level

programming language as diagramed in Figure 1 are

listed as follows:

In order to make easy to analyze the program, system

restructures the sequential program from input. Then

system will analyze the program and look for the data

dependence. Next system will optimize the program

and increase the degree of parallelism. Repeat the

step 2 and 3 until the program has already reached the

maximum degree of parallelism. Final system inserts

MPI function calls into a program and outputs the

parallelable one.

Figure 1: The concept of the proposed automatic

parallelizing compiler system

A sequential C program can be compiled for running

on a hybrid multiprocessing system. The proposed

compiler system shows in Figure 2 that includes

front-end and back-end passes. The front-end

transforms the input program into the SUIF

intermediate format file through the C front-end

compiler, and then sends the SUIF intermediate

format file to the back-end. The back-end can further

be separated into three passes. The first pass is “code

restructuring and analysis”. In order to maximize the

degree of parallelism, the loop is restructured for

finding and reducing data dependence. The second

pass is “parallel code generation” that determines the

degree of parallelism of loop structures, and then

decomposes the computation units and maps these

computation units into each processing unit. It gives

program the ability of executing in parallel through

inserting the MPICH function calls. The final pass is

“C back-end compiler”, it transforms the SUIF

intermediate format file into a parallelable C program

with MPICH function calls.

Figure 2: The automatic parallelizing compiler

system based on the SUIF2 compiler

system

 3

3.2 Enhanced MPICH Multi-protocol

Device

Proposed HMA needs an MPICH multi-

protocol device to handle inter-node communication

and intra-node communication. Two or more

processors belong to different level computers can

exchange data via the TCP/IP device. Processors that

belong to the same computer can use the shared-

memory device to exchange data. The MPICH

provides a multi-protocol device that supports both

devices, i.e., the TCP/IP device and shared-memory

device, and this multi-protocol device is called ch_p4.

One of the problems with the p4_shmem device is

owing to the default soft processor affinity; since the

OS scheduler attempt to maintain adequate load

balancing, processes will move between processors of

a computer. However, related data will not move to

corresponding private memory due to the hard

memory affinity. Therefore, all the processes may

almost access the memory on certain processors and

this will be a performance limiter.

Another problem of the p4_shmem device, a message

could end up using a packet cached in the global

queue of available packets while being prepared.

While a packet allocated previously is unavailable,

the process will allocate a new memory area for the

new packet from SM. Owing to the page-alignment

of the allocated memory area, if the new memory area

is part of a memory page that has already been

partially used for other packets, and this new memory

area will belong to other process that allocates the

memory page originally. This makes the performance

of any given message transaction hard or impossible

to predict.

The EMPIMPD is proposed solution these problem.

First, in order to make sure that processes will not

migrate away from the related data allocated in the

private memory, processes should be locked in

corresponding processors. Therefore, processes will

be given the same hard affinity as memory and this

can be accomplished with the “sched_setaffinity()”

system call. Before any private memory has been

allocated, the affinity must be set as early as possible

in the startup process. In order to make sure that the

processes are evenly distributed among the available

processors, the affinity cannot be set until the process

has found its own rank. After all the processes have

gotten their own ranks, they will be scheduled and set

affinities.

Second, the queue of available packets needs to be

split up, and each process has its own queue. When a

packet is received by a process, it will be moved into

the queue of available packets that belongs to the

sender.

Third, the packet/message allocation will happen in

page-aligned memory chunks or the per-process

page-aligned shared memory segment. The SM

allocator will be modified for both types of

allocations; it will allocate page-sized memory blocks

that are page aligned, and will take process IDs as the

name of each memory page so that these named pp.

can be managed effectively.

Finally, the lists “avail_buffs->*buff”, implemented

by “struct p4_msg” of cached available message

buffers “p4_global->avail_buffs[]” will also need to

be divided into page-aligned per-process partitions. A

buffer for the message is fetched from the cached

available message buffers, or allocated from the SM

segment if no free buffer of sufficient size can be

found. Then the data will be move into the list of

cached available message buffer, which belongs to

the sender.

3.3 Code Restructuring and Analysis
3.3.1 Loop Detection

Before unrolling loops, it is needed to detect

the loop statements from code body. The operations

are as follows: First, we will get the procedure

definition of the input source code, i.e., part (1), and

this procedure definition can be regarded as a handler

of the source code. Then we can obtain the code body

by using the method “get_body” via the procedure

definition, i.e., part (2). Referring to the definition of

code body in the “SUIF Infrastructure Guide”, the

code body of a procedure is formed with a lot of

“Statement”. Therefore, it is needed to transform the

code body into “Statement Description Format” in

order to find out the loop statement, i.e., part (3).

3.3.2 Loop Unrolling

After finding out the loop statements, the loops

will be unrolled. In loop unrolling process, it will

generate the information of iteration space that can be

used to analyze the data dependence. After

transforming the “ForStatament” into

“CollectObjects”, then we can use template

“list<ForStatement *>” to convert the

“CollectObjects” into enumerable type to see part (2).

After taking all the loops out by using part (3) to

enumerate every “ForStatament” in the input source

code, all the loops will be unrolled in next step.

For unrolling a loop, e.g. ForStatement, it requires to

obtain the upper bound, lower bound, and step of the

loop. The array index changed with the loop index in

the loop body will be replaced by a constant. Then the

label and index of this array will be written into a

table called “Iteration Space Table” (IST). An

“Iteration Space Table List” can be used to maintain

every IST in a code body. In the IST for iteration

there are two entries: LHS List and RHS List, to

record the array variables on the left hand side and

the right hand side of a statement respectively.

3.3.3 Data Dependence Analysis and Elimination

In the proposed system, an iteration of a loop is

a basic partition of a computation unit, thus, it is only

required to analyze the loop carried data dependence.

Loop carried data dependence can be detected by IST.

 4

There are four searching directions to find out the

four types of data dependence, as shown in Figure 3

and Table 1.

Figure 3: Four searching directions

Table 1: Searching direction to data relation

mapping table

The data dependence in a loop can be represented

with a dependence graph. If there exists any cycle in

the graph, i.e., data dependence cycle as illustrated in

Figure 4(a) and 5(a), it will decrease the degree of

parallelism in a loop. We can use the renaming

methodology to eliminate the anti-dependence or

output dependence to see in Figure 5(b) and 6(b)

which may cause cycles. After removing the anti-

dependence and output dependence, the SUIF

intermediate format file will be sent to the “loop

unrolling” step and “data dependence analysis” step

again. Finally, the SUIF intermediate format file will

be sent to the “degree of parallelism determination”

step.

Figure 4: Dependence graph with anti-dependence

removing

Figure 5: Dependence graph with output

dependence removing

3.4 Parallel Code Generation
3.4.1 Degree of Parallelism Determination

The degree of parallelism refers to the number

of computation units a loop can be sliced up into.

These computation units mapped into processors will

be executed concurrently without any error caused

from data dependence occurring. Group Table shown

in Figure 6 is created to record a set of iterations

which will be mapped into the same processor. There

exist data dependence between iterations in one group,

and these iterations must be mapped into the same

processor, except the group which id is assigned to

value -1. In this case, the maximum degree of

parallelism is 16.

Figure 6: Group Table

3.4.2 Loop Decomposition and Allocation

The maximum degree of parallelism can be

found from the group table. Iterations which have the

data dependence, group id > -1, will be allocated first.

Next, these groups, with id > -1, will be allocated to

processors in sequence according to the Group Table.

For example, if there are four processors then

allocation steps will be steps (1), (2), (3), and (4) as

shown in Figure 7. If each processor has been

assigned a mapping group, the remaining groups,

except the group with id=-1, will be allocated in

sequence to processors which have the smallest

number of mapping iterations, i.e., allocating step (5)

and (6). Finally the group with id=-1 will be allocated

to the processor with the similar process. At this stage,

an Iteration Mapping Table is generated to record the

mapping between iterations and processors for

indicating which processor will perform which

iterations.

Figure 7: Allocating iterations to processors

3.4.3 Explicit Function Call Insertion

The action of inserting enhanced MPI function

calls into the source code can be divided into six parts

in Figure 8.

(1) It needs to declare the MPICH library and the

proposed IterationMapping library in the source

 5

code.

(2) The proposed system will insert the statements of

initial settings for MPI environment into the

source code.

(3) The array variables will be sent to other

processing nodes, slave nodes, from the master

node by using the MPI_Bcast() function.

(4) Now the original nested loop structure will be

removed and is replaced with the function

“NextIteration()” which can return the index

value of the array variable in the loop body.

(5) The slave nodes will send array variables that

have accomplished to master node by using

MPI_Send() and MPI_Recv().

(6) Finally, MPI_Finalize() is inserted.

Figure 8: Six parts of Function calls insertion

4. Experimental Results

Two case studies are selected in this section.

The first case uses a MPI benchmark called MPBench

to evaluate the performance of MPICH with proposed

enhanced multi-protocol device. The MPI benchmark

compiled with GCC compiler will run on a dual-

processor computer. Six bandwidth benchmark item

of the MPI benchmark is selected to execute such as

bandwidth, bidirectional bandwidth, all-to-all,

broadcast, reduce and all reduce. More detailed

information about the test platform can be found in

Table 2.

Table 2: Test Platform for Case I

Processor Intel Xeon (Prestonia)

LV @ 2.4 GHhz × 2

Memory 1 Gigabytes × 1 (DDR

266 MHz with ECC

registered)

Red Hat release 9 (Red

Hat Linux 3.2.2-5)

Linux

version

2.4.20-

8smp

OS

compiler gcc 3.2.2

MPI MPICH version 1.2.7p1

(with ch_p4 or enhanced

ch_p4 device)

Benchmark LLCbench–MPBench(six

bandwidth benchmark

items are selected)

The second case to list in Table 3 uses the Livermore

Loops program compiled with proposed automatic

parallelizing compiler system to evaluate the

feasibility and performance. The transformed

Livermore Loops program will be executed on a PC

cluster that consists of 8 dual-processor nodes in

parallel as shown in Table 4.

After all bandwidth benchmark items are

accomplished, the average bandwidth with different

message size, from 512 bytes to 1024 Kbytes, are

illustrated in Figure 9 and it can be found that the

MPICH with proposed enhanced ch_p4 device gives

better performance than with original ch_p4 device.

Table 5 shows the speedups when running the

different bandwidth benchmark items with proposed

enhanced ch_p4 device instead of running with the

original ch_p4 device. The maximum speedup 13.7%

is given when executing the bidirectional bandwidth

benchmark. While running the broadcast benchmark

or the all reduce benchmark system gains the

minimal speedup about 0.5%. Furthermore, the

average speedup about 3.7% is gained. Therefore, the

average speedup may be grater than 3.7% while most

of the MPI operations used in a MPI program are

bidirectional send/recv operations.

Table 6 shows the execution time of the parallelized

Livermore loops program executed on the PC cluster

with 8 dual-processor nodes. In this table, the

problem size means the number of matrix operations,

or the matrix size. Each loop kernel is executed twice

with different problem sizes. The number of outmost

loop iterations is fixed to 10000, besides loop kernel

5 and kernel 6.

 6

Table 3: Test Platform for Case II

Processor Intel Xeon (Prestonia) LV

@ 2.4 GHhz × 2

Memory 1 Gigabytes × 1 (DDR 266

MHz with ECC registered)

Network 1 Gigabit Ethernet

Red Hat release 9 (Red Hat

Linux 3.2.2-5)

Linux

version

2.4.20-8smp

OS

compiler proposed

compiler

system

MPI MPICH version 1.2.7p1

Benchmark Livermore Loops (8 loop

kernels are selected)

×

8

Table 4: Kernels of Livermore Loops

of loop

kernel

kernel name

1 hydro fragment

2 ICCG excerpt (Incomplete

Cholesky Conjugate Gradient)

3 inner product

4 banded linear equations

5 tri-diagonal elimination, below

diagonal

6 general linear recurrence

equations

7 equation of state fragment

8 ADI integration

Table 5: Speedups of MPICH/enhanced ch_p4

device

Benchmark

Items

Mean Bandwidth

(KB/s)

(original ch_p4 used)

Mean Bandwidth

(KB/S)

(enhanced ch_p4 used)

Speedups

bandwidth 56259.089929 56543.403745 0.51%

Bibw* 116264.403108 117894.788383 1.40%

all-to-all 159057.839674 164780.347571 3.60%

broadcast 137161.926630 155961.733866 13.71%

reduce 174961.047554 175900.320313 0.54%

all-reduce 58006.535878 59516.728133 2.60%

Average 3.73%

*bibw-bidirectional bandwidth

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0.
5 1 2 4 8 16 32 64 12

8
25
6

51
2

10
24

Message Size (KB)

M
ea

n
B
an

dw
id
th
 (
K
B
/s
ec

)

original ch_p4

enhanced ch_p4

Figure 9: Mean bandwidth of MPICH/enhanced

ch_p4 device

Table 6: Execution time of Livermore Loops

5. Conclusions
An automatic parallelizing compiler system has

been proposed for improving the programmability of

HMA. The compiler system performs the loop

transformation for loop structures in a sequential

program for parallel execution. The experimental

results show that the compiler system is workable and

a better system performance can be achieved. An

EMPICHMPD has also been proposed and can

improve the bandwidth when using the MPICH

ch_p4 device with SM communication mode.

6. Reference

[1] T. L. Sterling, J. Salmon, D. J. Backer, and D. F.

Savarese, “How to Build a Beowulf: A Guide to

the Implementation and Application of PC

Clusters”, 2
nd
 Printing, MIT Press, Cambridge,

Massachusetts, USA, 1999.

[2] R. Buyya, “High Performance Cluster

Computing: System and Architectures”, Vol.1,

Prentice Hall PTR, NJ, 1999.

[3] B. Wilkinson and M. Allen,”Parallel

Programming: Techniques and Applications

Using Networked Workstations and Parallel

Computers”, Prentice Hall PTR, NJ, 1999.

[4] Seema Hiranandani, Ken Kennedy, and Chau-

Wen Tseng, “Compiling Fortran D for MIMD

distributed-memory machines,”

Communications of the ACM, Vol. 35, No. 8

(Aug. 1992), pp. 66-80.

[5] High Performance Fortran Language

Specification Version 2.0, Houston Texas: Rice

University, 1997.

[6] William Gropp, Ewing Lusk, Nathan Doss, and

Anthony Skellum, “A high-performance,

portable implementation of the MPI message-

passing interface standard,” Parallel Computing,

1996, pp. 789-828.

[7] D. A. Padua et al., “Polaris: A new-generation

parallelizing compiler for MPPs,” Technical

Report CSRD-1306, Center for Supercomputing

Research and Development, Univ. of Illinois at

Urbana-Champaign, June 1993.

[8] A. L. Cox, S. Dwarkadas, H. Lu, and W.

Zwaenepoel, “Evaluating the performance of

 7

software distributed shared memory as a target

for parallelizing compilers,” In the Proc. of the

11th International Parallel Processing

Symposium, Geneva. Switzerland, Apr. 1997,

pp. 475-482.

[9] P. J. Keleher, “Update Protocols and cluster-

based shared memory,” Computer

Communications,” Vol. 22, No.11, July 1999,

pp. 1045-1055.

[10] Yijun Yu, E.H. D'Hollander, "Partitioning loops

with variable dependence distances," 2000

International Conference on Parallel Processing,

2000. Proceedings, Aug. 2000, pp. 209-218.

[11] M. E. Wolf, D. E. Maydan, Ding-Kai Chen,

"Combining loop transformations considering

caches and scheduling," Proceedings of the 29th

Annual IEEE/ACM International Symposium

on Microarchitecture, Dec. 1996, pp. 274-286.

[12] M. Kandemir, J. Ramanujam, and A. Choudary,

“Compiler Algorithms for Optimizing Locality

and Parallelism on Shared and Distributed

Memory Machines,” Journal of Parallel and

Distributed Computing, 2000, pp. 924-965.

[13] G. Goumas, M. Athanasaki, and N. Koziris,

“An efficient code generation technique for

tiled iteration spaces,” IEEE Transaction on

Parallel and Distributed Systems, Vol. 14, Oct.

2003, pp.1021–1034.

