
 1 

混合式多處理器系統可程式度之改善 
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摘要摘要摘要摘要    

多處理機系統的可程式度對於程式設計者而

言，是個普遍面臨到的重要議題。使用多核心處

理器的運算節點所連結而成的叢集電腦，是一個

包含訊息傳遞與記憶體分享架構的混合式多處理

機系統，而這樣的系統也將會隨著多核心處理器

的流行越顯普遍。本篇論文提出了在混合式多處

理機系統下的可程式度改善之方法。論文中提出

了一套以 SUIF 為基礎的編譯系統，能將使用 C 程

式語言所撰寫的循序式程式轉換成適用於混合式

多處理機系統下進行平行處理的程式。而最後的

實驗結果，也顯示出此套編譯系統的可運行性並

能提升程式執行的效能。此篇論文也提出了一個

加強型 MPICH 多重通訊協議裝置，可以增進此裝

置在分享式記憶體通訊模式下的頻寬表現。 

關鍵詞: 可程式度、迴圈轉換、混合式多處理器
系統 

Abstract 

The programmability of a multiprocessor 

system is generally recognized to be the major issue 

confronting designers. A PC cluster with multi-core 

computing nodes to form a Hybrid Multiprocessor 

System which consists of both message passing and 

shared memory multiprocessing will become popular. 

The proposed SUIF-based compiler system with 

software methodologies for improving the 

programmability of a hybrid multiprocessor has been 

built to transform the sequential program which is 

written in C language to running in parallel. 

Moreover, an enhanced MPICH multi-protocol device 

has also been proposed, and it can improve the 

bandwidth when using the MPICH multi-protocol 

device with shared memory communication mode. 

The experimental results show that the proposed 

system is workable and has a better performance. 

Keywords : Programmability, Loop Transformation, 

Hybrid Multiprocessor Architecture 

1. Introduction 

      In scientific or commercial application is 

demand huge computing power to execute tasks. The 

multiprocessing architecture is the better solutions of 

improving the computing power for parallel 

computing. This system can operate tasks at the same 

time on difference process units. The classification of 

the multiprocessing architecture can be divided in 

accordance with different ways, such as the symmetry 

of the processor, the type of instruction and data 

streams and the processor coupling. However, it is not 

difficult to use this multiprocessing architecture to 

improve the computing power with the prevalence of 

the PC cluster [1] [2] [3]. In recent years, with the 

emergence of the multi-core processor constructed 

personal computer, the performance of the PC cluster 

can further be improved. 

Multi-core processor (MCP), chip-level 

multiprocessing (CMP), has become more popular. 

There will be more and more PC clusters made up of 

CMP or SMP computers. The mixed model called 2-

level Hybrid Multiprocessing Architecture (2LHMA). 

There is 2-level memory architecture, the one is the 

shared memory (SM) and the other one is distributed 

memory (DM). The most existing automatic 

parallelizing compilers are designed for SM, but the 

DSM libraries stilly have the problem of inefficiency 

[8] [9]. 

Different multiprocessing architectures have different 

methods to write parallel program. According to the 

memory architecture, the SM can adopt the threading 

technique, and the DM can use the message passing 

technique. There are two methods to write parallel 

programs with message passing technique. The one is 

the parallel program such as Fortran D [2] or HPF [3]. 

The other is the sequential program in the 

implementation mostly used MPI or PVM [6]. 

Nevertheless, this is a hindrance for general users, 

some the automatic parallelizing compilers have 

proposed to reduce the threshold, e.g. Polaris [7], PGI 

PGF77/PGCC and JAVAR-KAI and so forth, for the 

SM. The DSM library such as Bert 77, 
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PARAGUIN/PARADIGM, PGI PGHPF, and VAST-

HPF etc allows programmers to write parallel 

program with SM programming style on the DM. 

In this paper, we propose a SUIF-based automatic 

parallelizing compiler system for handling the C 

language. A sequential program can be transformed to 

a parallelable one for running on HMA without 

considering the problem of what type of the memory 

system is. This hybrid memory model will use the 

message passing as the communication foundation, 

and each core in cluster is regarded as an independent 

processing unit. These units will exchange data by 

MPICH. In order to reduce the communication time, 

units that belong to the same computers can just use 

local memory for exchanging data by using the MPI 

shared-memory device. Therefore, an Enhanced MPI 

Multi-Protocol Device (EMPIMPD) proposed to 

handle the communication of inter-node and intra-

node, respectively. 

This paper is organized as follows: Section 2 is 

relative work to describe some knowledge of 

techniques. Our approach for constructing an 

automatic parallelizing compiler system will present 

in section 3. Section 4 introduces the environment of 

the experiment to set up and show the experimental 

results. Finally, concluding remarks and future 

direction are given in section 5. 

2. Related Work 

Loop Transformation (LT) means to restructure 

the loop of the source code. The actions of LT are 

unrolling the loop, iterations separated and regrouped, 

and mapping into processing units. LT can be 

regarded as a set of optimizations and have three 

purposes. First, it can increase the degree of the 

parallelism in a source code [11] [12]. Second, it can 

utilize the advantage of the locality concept 

effectively. Third, it can reduce the required 

communication or synchronous time [13]. However, 

we need to analyze the data dependence in the source 

code before restructuring in order to avoid something 

wrong due to data dependence. 

The Stanford University Intermediate Format version 

2 (SUIF2) can be described as two major parts: the 

front-end and the back-end. The front-end consist of 

lexical analysis, syntax analysis, semantic analysis, 

and generation of the SUIF intermediate format file. 

In the back-end, the operations are code optimization 

and code generation. SUIF2 compiler system, first, 

gives full supports of handling the SUIF intermediate 

format file, next allows user to develop new modules 

or compiler passes according to their specific 

requirements, final supports in current programming 

languages such as FORTRAN, C, C++ and Java.  

3. Design and Implementation 

3.1 System Model 

The concepts of proposed automatic 

parallelizing compiler system designed for high-level 

programming language as diagramed in Figure 1 are 

listed as follows: 

In order to make easy to analyze the program, system 

restructures the sequential program from input. Then 

system will analyze the program and look for the data 

dependence. Next system will optimize the program 

and increase the degree of parallelism. Repeat the 

step 2 and 3 until the program has already reached the 

maximum degree of parallelism. Final system inserts 

MPI function calls into a program and outputs the 

parallelable one. 

 
Figure 1: The concept of the proposed automatic 

parallelizing compiler system  

A sequential C program can be compiled for running 

on a hybrid multiprocessing system. The proposed 

compiler system shows in Figure 2 that includes 

front-end and back-end passes. The front-end 

transforms the input program into the SUIF 

intermediate format file through the C front-end 

compiler, and then sends the SUIF intermediate 

format file to the back-end. The back-end can further 

be separated into three passes. The first pass is “code 

restructuring and analysis”. In order to maximize the 

degree of parallelism, the loop is restructured for 

finding and reducing data dependence. The second 

pass is “parallel code generation” that determines the 

degree of parallelism of loop structures, and then 

decomposes the computation units and maps these 

computation units into each processing unit. It gives 

program the ability of executing in parallel through 

inserting the MPICH function calls. The final pass is 

“C back-end compiler”, it transforms the SUIF 

intermediate format file into a parallelable C program 

with MPICH function calls. 

 
Figure 2: The automatic parallelizing compiler 

system based on the SUIF2 compiler 

system  
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3.2 Enhanced MPICH Multi-protocol 

Device  

Proposed HMA needs an MPICH multi-

protocol device to handle inter-node communication 

and intra-node communication. Two or more 

processors belong to different level computers can 

exchange data via the TCP/IP device. Processors that 

belong to the same computer can use the shared-

memory device to exchange data. The MPICH 

provides a multi-protocol device that supports both 

devices, i.e., the TCP/IP device and shared-memory 

device, and this multi-protocol device is called ch_p4.  

One of the problems with the p4_shmem device is 

owing to the default soft processor affinity; since the 

OS scheduler attempt to maintain adequate load 

balancing, processes will move between processors of 

a computer. However, related data will not move to 

corresponding private memory due to the hard 

memory affinity. Therefore, all the processes may 

almost access the memory on certain processors and 

this will be a performance limiter.  

Another problem of the p4_shmem device, a message 

could end up using a packet cached in the global 

queue of available packets while being prepared. 

While a packet allocated previously is unavailable, 

the process will allocate a new memory area for the 

new packet from SM. Owing to the page-alignment 

of the allocated memory area, if the new memory area 

is part of a memory page that has already been 

partially used for other packets, and this new memory 

area will belong to other process that allocates the 

memory page originally. This makes the performance 

of any given message transaction hard or impossible 

to predict. 

The EMPIMPD is proposed solution these problem. 

First, in order to make sure that processes will not 

migrate away from the related data allocated in the 

private memory, processes should be locked in 

corresponding processors. Therefore, processes will 

be given the same hard affinity as memory and this 

can be accomplished with the “sched_setaffinity( )” 

system call. Before any private memory has been 

allocated, the affinity must be set as early as possible 

in the startup process. In order to make sure that the 

processes are evenly distributed among the available 

processors, the affinity cannot be set until the process 

has found its own rank. After all the processes have 

gotten their own ranks, they will be scheduled and set 

affinities.  

Second, the queue of available packets needs to be 

split up, and each process has its own queue. When a 

packet is received by a process, it will be moved into 

the queue of available packets that belongs to the 

sender.  

Third, the packet/message allocation will happen in 

page-aligned memory chunks or the per-process 

page-aligned shared memory segment. The SM 

allocator will be modified for both types of 

allocations; it will allocate page-sized memory blocks 

that are page aligned, and will take process IDs as the 

name of each memory page so that these named pp. 

can be managed effectively. 

Finally, the lists “avail_buffs->*buff”, implemented 

by “struct p4_msg” of cached available message 

buffers “p4_global->avail_buffs[]” will also need to 

be divided into page-aligned per-process partitions. A 

buffer for the message is fetched from the cached 

available message buffers, or allocated from the SM 

segment if no free buffer of sufficient size can be 

found. Then the data will be move into the list of 

cached available message buffer, which belongs to 

the sender. 

3.3 Code Restructuring and Analysis  
3.3.1 Loop Detection  

Before unrolling loops, it is needed to detect 

the loop statements from code body. The operations 

are as follows: First, we will get the procedure 

definition of the input source code, i.e., part (1), and 

this procedure definition can be regarded as a handler 

of the source code. Then we can obtain the code body 

by using the method “get_body” via the procedure 

definition, i.e., part (2). Referring to the definition of 

code body in the “SUIF Infrastructure Guide”, the 

code body of a procedure is formed with a lot of 

“Statement”. Therefore, it is needed to transform the 

code body into “Statement Description Format” in 

order to find out the loop statement, i.e., part (3). 

3.3.2 Loop Unrolling 

After finding out the loop statements, the loops 

will be unrolled. In loop unrolling process, it will 

generate the information of iteration space that can be 

used to analyze the data dependence. After 

transforming the “ForStatament” into 

“CollectObjects”, then we can use template 

“list<ForStatement *>” to convert the 

“CollectObjects” into enumerable type to see part (2). 

After taking all the loops out by using part (3) to 

enumerate every “ForStatament” in the input source 

code, all the loops will be unrolled in next step. 

For unrolling a loop, e.g. ForStatement, it requires to 

obtain the upper bound, lower bound, and step of the 

loop. The array index changed with the loop index in 

the loop body will be replaced by a constant. Then the 

label and index of this array will be written into a 

table called “Iteration Space Table” (IST). An 

“Iteration Space Table List” can be used to maintain 

every IST in a code body. In the IST for iteration 

there are two entries: LHS List and RHS List, to 

record the array variables on the left hand side and 

the right hand side of a statement respectively. 

3.3.3 Data Dependence Analysis and Elimination 

In the proposed system, an iteration of a loop is 

a basic partition of a computation unit, thus, it is only 

required to analyze the loop carried data dependence. 

Loop carried data dependence can be detected by IST. 
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There are four searching directions to find out the 

four types of data dependence, as shown in Figure 3 

and Table 1. 

 
Figure 3: Four searching directions 

Table 1: Searching direction to data relation 

mapping table 

 

The data dependence in a loop can be represented 

with a dependence graph. If there exists any cycle in 

the graph, i.e., data dependence cycle as illustrated in 

Figure 4(a) and 5(a), it will decrease the degree of 

parallelism in a loop. We can use the renaming 

methodology to eliminate the anti-dependence or 

output dependence to see in Figure 5(b) and 6(b) 

which may cause cycles. After removing the anti-

dependence and output dependence, the SUIF 

intermediate format file will be sent to the “loop 

unrolling” step and “data dependence analysis” step 

again. Finally, the SUIF intermediate format file will 

be sent to the “degree of parallelism determination” 

step. 

 
Figure 4: Dependence graph with anti-dependence 

removing 

 
Figure 5: Dependence graph with output 

dependence removing 

3.4 Parallel Code Generation 
3.4.1 Degree of Parallelism Determination 

The degree of parallelism refers to the number 

of computation units a loop can be sliced up into. 

These computation units mapped into processors will 

be executed concurrently without any error caused 

from data dependence occurring. Group Table shown 

in Figure 6 is created to record a set of iterations 

which will be mapped into the same processor. There 

exist data dependence between iterations in one group, 

and these iterations must be mapped into the same 

processor, except the group which id is assigned to 

value -1. In this case, the maximum degree of 

parallelism is 16. 

 
Figure 6: Group Table 

3.4.2 Loop Decomposition and Allocation 

The maximum degree of parallelism can be 

found from the group table. Iterations which have the 

data dependence, group id > -1, will be allocated first. 

Next, these groups, with id > -1, will be allocated to 

processors in sequence according to the Group Table. 

For example, if there are four processors then 

allocation steps will be steps (1), (2), (3), and (4) as 

shown in Figure 7. If each processor has been 

assigned a mapping group, the remaining groups, 

except the group with id=-1, will be allocated in 

sequence to processors which have the smallest 

number of mapping iterations, i.e., allocating step (5) 

and (6). Finally the group with id=-1 will be allocated 

to the processor with the similar process. At this stage, 

an Iteration Mapping Table is generated to record the 

mapping between iterations and processors for 

indicating which processor will perform which 

iterations. 

 

 
Figure 7: Allocating iterations to processors 

3.4.3 Explicit Function Call Insertion 

The action of inserting enhanced MPI function 

calls into the source code can be divided into six parts 

in Figure 8.  

(1) It needs to declare the MPICH library and the 

proposed IterationMapping library in the source 
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code. 

(2) The proposed system will insert the statements of 

initial settings for MPI environment into the 

source code. 

(3) The array variables will be sent to other 

processing nodes, slave nodes, from the master 

node by using the MPI_Bcast( ) function. 

(4) Now the original nested loop structure will be 

removed and is replaced with the function 

“NextIteration()” which can return the index 

value of the array variable in the loop body. 

(5) The slave nodes will send array variables that 

have accomplished to master node by using 

MPI_Send() and MPI_Recv( ). 

(6) Finally, MPI_Finalize() is inserted. 

 

 
Figure 8: Six parts of Function calls insertion 

4. Experimental Results 

Two case studies are selected in this section. 

The first case uses a MPI benchmark called MPBench 

to evaluate the performance of MPICH with proposed 

enhanced multi-protocol device. The MPI benchmark 

compiled with GCC compiler will run on a dual-

processor computer. Six bandwidth benchmark item 

of the MPI benchmark is selected to execute such as 

bandwidth, bidirectional bandwidth, all-to-all, 

broadcast, reduce and all reduce. More detailed 

information about the test platform can be found in 

Table 2. 

Table 2: Test Platform for Case I 

Processor Intel Xeon (Prestonia) 

LV @ 2.4 GHhz × 2 

Memory 1 Gigabytes × 1 (DDR 

266 MHz with ECC 

registered) 

Red Hat release 9 (Red 

Hat Linux 3.2.2-5) 

Linux 

version 

2.4.20-

8smp 

OS 

compiler  gcc 3.2.2 

MPI MPICH version 1.2.7p1 

(with ch_p4 or enhanced 

ch_p4 device) 

Benchmark LLCbench–MPBench(six 

bandwidth benchmark 

items are selected) 

The second case to list in Table 3 uses the Livermore 

Loops program compiled with proposed automatic 

parallelizing compiler system to evaluate the 

feasibility and performance. The transformed 

Livermore Loops program will be executed on a PC 

cluster that consists of 8 dual-processor nodes in 

parallel as shown in Table 4. 

After all bandwidth benchmark items are 

accomplished, the average bandwidth with different 

message size, from 512 bytes to 1024 Kbytes, are 

illustrated in Figure 9 and it can be found that the 

MPICH with proposed enhanced ch_p4 device gives 

better performance than with original ch_p4 device. 

Table 5 shows the speedups when running the 

different bandwidth benchmark items with proposed 

enhanced ch_p4 device instead of running with the 

original ch_p4 device. The maximum speedup 13.7% 

is given when executing the bidirectional bandwidth 

benchmark. While running the broadcast benchmark 

or the all reduce benchmark system gains the 

minimal speedup about 0.5%. Furthermore, the 

average speedup about 3.7% is gained. Therefore, the 

average speedup may be grater than 3.7% while most 

of the MPI operations used in a MPI program are 

bidirectional send/recv operations. 

Table 6 shows the execution time of the parallelized 

Livermore loops program executed on the PC cluster 

with 8 dual-processor nodes. In this table, the 

problem size means the number of matrix operations, 

or the matrix size. Each loop kernel is executed twice 

with different problem sizes. The number of outmost 

loop iterations is fixed to 10000, besides loop kernel 

5 and kernel 6. 
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Table 3: Test Platform for Case II 

Processor Intel Xeon (Prestonia) LV 

@ 2.4 GHhz  × 2 

Memory 1 Gigabytes × 1 (DDR 266 

MHz with ECC registered) 

Network 1 Gigabit Ethernet 

Red Hat release 9 (Red Hat 

Linux 3.2.2-5) 

Linux 

version 

2.4.20-8smp 

OS 

compiler  proposed 

compiler 

system  

MPI  MPICH version 1.2.7p1 

Benchmark Livermore Loops (8 loop 

kernels are selected) 

 

 

 

 

× 

8  

 

Table 4: Kernels of Livermore Loops 

# of loop 

kernel 

kernel name 

1 hydro fragment 

2 ICCG excerpt (Incomplete 

Cholesky Conjugate Gradient) 

3 inner product 

4 banded linear equations 

5 tri-diagonal elimination, below 

diagonal 

6 general linear recurrence 

equations 

7 equation of state fragment 

8 ADI integration 

 

Table 5: Speedups of MPICH/enhanced ch_p4 

device 

Benchmark 

Items 

Mean Bandwidth 

(KB/s) 

(original ch_p4 used) 

Mean Bandwidth 

(KB/S) 

(enhanced ch_p4 used) 

Speedups 

bandwidth 56259.089929  56543.403745  0.51% 

Bibw* 116264.403108  117894.788383  1.40% 

all-to-all 159057.839674  164780.347571  3.60% 

broadcast 137161.926630  155961.733866  13.71% 

reduce 174961.047554  175900.320313  0.54% 

all-reduce 58006.535878  59516.728133  2.60% 

Average 3.73% 

*bibw-bidirectional bandwidth  
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Figure 9: Mean bandwidth of MPICH/enhanced 

ch_p4 device  

 

Table 6: Execution time of Livermore Loops 

 

5. Conclusions  
An automatic parallelizing compiler system has 

been proposed for improving the programmability of 

HMA. The compiler system performs the loop 

transformation for loop structures in a sequential 

program for parallel execution. The experimental 

results show that the compiler system is workable and 

a better system performance can be achieved. An 

EMPICHMPD has also been proposed and can 

improve the bandwidth when using the MPICH 

ch_p4 device with SM communication mode. 
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