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Abstract

Embedding of paths have attracted much attention in the
parallel processing. Many-to-many communication is one
of the most central issues in various interconnection net-
works. A graphG is globally two-equal-disjoint path cov-
erable if for any two distinct pairs of vertices(u, v) and
(x, y) of G, there exist two disjoint pathsPuv andPxy

satisfied that(1) Puv joins u to v andPxy joins x to y,
(2) |Puv| = |Pxy|, and(3) V (Pxy

⋃
Pxy) = V (G). In

this paper, we prove thatTQn is globally 2-equal-disjoint
path coverable forn ≥ 5.

Keywords: Interconnection network; Twisted cube; dis-
joint path; k-equal-disjoint path cover, 2-equal-disjoint
path coverable.

1 Introduction

For the graph definition and notation we follow [2].G =
(V,E) is a graph ifV is a finite set andE is a subset
of {(a, b) | (a, b) is an unordered pair ofV }. We say
thatV is thevertex set andE is theedge set. A path of
lengthk from x to y is a finite sequence of distinct ver-
tices 〈v0, v1, v2, . . . , vk〉, wherex = v0, y = vk, and
(vi−1, vi) ∈ E for all 1 ≤ i ≤ k. For convenience, we
use the sequence〈v0, . . . , vi, P, vj , . . . , vk〉, whereP =
〈vi, vi+1, . . . , vj〉 to denote the path〈v0, v1, v2, . . . , vk〉.
Note that it is possible that the pathP has length
0. We can also write the path〈v0, v1, v2, · · · , vk〉 as
〈v0, P1, vi, vi+1, · · · , vj , P2, vt, · · · , vk〉, whereP1 is the
path〈v0, v1, · · · , vi〉 andP2 is the path〈vj , vj+1, · · · , vt〉.
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We used(u, v) to denote the distance betweenu andv,
i.e., the length of the shortest path joiningu andv.

A path is aHamiltonian path if it contains all vertices
of G. A graphG is Hamiltonian connected if there exists
a Hamiltonian path joining any two distinct vertices. A
cycle is a path (except the first vertex is the same as the
last vertex) containing at least three vertices. A cycle ofG
is aHamiltonian cycle if it contains all vertices. A graph
is Hamiltonian if it has a Hamiltonian cycle.

Finding node-disjoint paths is one of the important is-
sues of routing among nodes in various interconnection
networks. Node-disjoint (abbreviated as disjoint) paths
can be used to avoid communication congestion and pro-
vide parallel paths for an efficient data routing among
nodes. Moreover, multiple disjoint paths can be more
fault-tolerant of node or link failures and greatly enhance
the transmission reliability. Disjoint paths generally fall
into three categories: one-to-one, one-to-many, and many-
to-many. The one-to-one disjoint path is built with one
source and one destination. The one-to-many disjoint
paths like a tree structure, they contain one source and
many distinct destination nodes. The many-to-many dis-
joint paths involvek, k ≥ 1, disjoint paths withk pairs
distinct source and destination nodes.

A disjoint path cover in a graphG is to find disjoint
paths containing all the vertices inG. For an embedding
of linear arrays in a network, the cover implies every node
can be participated in a pipeline computation. One-to-one
disjoint path covers in recursive circulants [8] and one-
to-many disjoint path covers in some hypercube-like in-
terconnection networks [9] were studied. The many-to-
manyk-disjoint path cover is proposed by Park etc. in
[10]. In this paper, we call such many-to-manyk-disjoint
path cover (abbreviated ask-disjoint path cover) as many-
to-many k-equal-disjoint path cover (abbreviated ask-
equal-disjoint path cover) thatk disjoint paths have same
lengths. Thek disjoint paths with equal length implies
that the parallel processing ofk pipeline is guaranteed ac-
curately. Furthermore, a graph is called globallyk-equal-
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disjoint path coverable if there exists ak-equal-disjoint
path cover for anyk distinct source-destination pairs.

An n-dimensional Twisted cube,TQn[3], is a variation
of hypercube. It has2n vertices and each vertex has the
same degreen. The difference is that it diverts some edges
which are calledtwisted edge and these edge reduce the
distance between vertices.

Though some topological properties of Twisted cubes
have been studied in the literature [1, 4, 5, 7, 11, 12, 13].
In this paper, we prove that the Twisted cube is glob-
ally two-equal-disjoint path coverable. In next section,
we give the definition of two-equal-disjoint path cover-
able problem and Twisted Cubes. Then we prove that
the Twisted cube is globally two-equal-disjoint path cov-
erable in the section 3. In the final section, we give the
conclusion.

2 Preliminary

In this section, we will first give the definition of glob-
ally two-equal-disjoint path coverable problem of a graph
G, and then we will give the relevant definitions in graph
theory and the definition of the Twisted cubes.

Definition 1 A graph G is (u, v, x, y)-two-equal-disjoint
path coverable if there are two disjoint paths Puv and Pxy

such that Puv joins the vertices u to v, Pxy joins the ver-
tices x to y, and V (Puv

⋃
Pxy) = V (G).

Definition 2 A graph G is globally two-equal-disjoint
path coverable if for any two distinct pairs of vertices
(u, v) and (x, y), the (u, v, x, y)-two-equal-disjoint path
cover exists.

To define the Twisted cubes, as proposed by Hilbers [3],
the term so called ”parity” is introduced.

Definition 3 The par-
ity Pj(u) = uj

⊕
uj−1

⊕
· · ·

⊕
u1

⊕
u0 is a function

using exclusive-or,
⊕

.

A 2-bit in u is a pair of adjacent bits where the larger
index is even, for exampleu2u1. And the i-th 2-bit is
u2iu2i−1 for i ≥ 1. But the 0-th 2-bit is justu0. The
following is the recursive definition of then-dimensional
Twisted cubeTQn.

Definition 4 [3] An n-dimensional twisted cube for n =
2k + 1, denoted TQn, is a graph G(V,E), where V =
{v|v ∈ {0, 1}n} and E = {(x, y)|x, y ∈ V , satisfying

(1) x2ix2i−1 = y2iy2i−1 or y2iy2i−1; with P2i−2(x) =
1, or
x2ix2i−1 = y2iy2i−1 or y2iy2i−1; with P2i−2(x) =
0 for some 2-bit i; and

(2) x2jx2j−1 = y2jy2i−1 for any other 2-bits j 6= i.

A matching M of a graphG is a set of pairwise disjoint
edges.M is a perfect matching if each vertex ofG be-
longs to some edge inM . From the definition, we have
the following lemma.

Lemma 1 [6]
Both the subgraph induced by TQ0,0

n−2

⋃
TQ1,0

n−2 and the

subgraph induced by TQ0,1
n−2

⋃
TQ1,1

n−2 are isomorphic to
TQn−2 × K2 where K2 is the complete graph with two
vertices. Moreover, the edges joining TQ0,0

n−2

⋃
TQ1,0

n−2

and TQ0,1
n−2

⋃
TQ1,1

n−2 form a perfect matching of TQn .

Let G and H be two graphs having the same num-
ber of vertices. G ⊕M H denotes a graph which
has copies ofG and H connected by a matchingM .
Let TQ0

n+1 and TQ1
n+1 be the subgraphs induced by

V (TQ0,0
n )

⋃
V (TQ1,0

n ) andV (TQ0,1
n )

⋃
V (TQ1,1

n ), re-
spectively. Then by Lemma 1, both ofTQ0

n+1 and
TQ1

n+1 are isomorphic toTQn × K2, andTQ0
n+1 ⊕M

TQ1
n+1 is isomorphic toTQn+2 for a specific match-

ing M . In addition,TQn × K2 has two copies ofTQn,
and we useTQ0

n andTQ1
n to denote them, respectively.

For convenience of discussion, we add 0 to every vertex
v ∈ V (TQ0

n) and 1 to every vertexu ∈ V (TQ0
n), re-

spectively, as the leading bits. As a result, each vertex
of TQn × K2 is represented by a binary string of length
n + 1. These notations are used extensively throughout
this paper.

We then introduce two important fault Hamiltonian re-
sults for proving the main theorem in the next section of
this paper. A graphG is k-fault Hamiltonian connected if
for any faulty setF ⊂ V (G) ∪ E(G) such that|F | ≤ k,
G − F is still Hamiltonian connected.

Lemma 2 [6] TQn is n−3 fault Hamiltonian connected.

Lemma 3 [6] For n ≥ 3 and i ∈ {0, 1}, TQ0,i
n

⋃
TQ1,i

n

is (n − 1)-Hamiltonian and (n − 2)-Hamiltonian con-
nected

3 Twisted cube is globally two-
disjoint equal path coverable

As a starting point we present lemmas 4 and 5 which es-
tablish the base case of Theorem 1.

Lemma 4 TQ3 is not globally two-equal-disjoint path
coverable.

Proof. To prove this lemma, we give a counterexam-
ple. Given two pair of vertices0, 1 and2, 4, TQ3 is not
(0, 1, 2, 4)-two-equal-disjoint path coverable. 2

2



Lemma 5 TQ5 is globally two-equal-disjoint path cov-
erable.

Proof. To prove this case is very tedious. With long and
detail discussion, we have completed theoretical proof for
TQ5. Nevertheless, we do not present it in this paper for
reducing complexity. However, we can also verify this
small case directly using computer. 2

Next we showTQn × K2 has the same result ifTQn

is globally two-equal-disjoint path coverable.

Lemma 6 Let n ≥ 5. TQn × K2 is also globally two-
equal-disjoint path coverable if TQn is globally two-
equal-disjoint path coverable.

Proof. Let TQn+1 = TQn × K2 and letTQ0
n andTQ1

n

be the two components ofTQn+1 . Let (u, v) and(x, y)
be any two distinct vertex pairs ofTQn+1. Herein, we
want to establish two disjoint pathsPuv, andPxy with
equal length2n − 1. The proof consists of four cases as
follows:

Case 1: All four end vertices belong to the sameTQi
n,

i = 0, 1.
Without loss of generality, letu, v, x, y ∈ V (TQ0

n).
By hypothesis, there exist two equal disjoint pathsP 0

uv

and P 0
xy of length 2n−1 − 1 in TQ0

n. Let t (resp. w)
be the neighbor ofu (resp. x) on pathP 0

uv (resp. P 0
xy).

Let P 0
uv = (u, t, P 0

tv) and P 0
xy = (x,w, P 0

wy). Let
u1, t1, x1, and w1 be the neighbors ofu, t, x, and w
in TQ1

n, respectively. Then, there are also two equal
disjoint pathsP 1

u1t1
and P 1

x1w1 of length 2n−1 − 1 in
TQ1

n. Let Puv = (u, u1, P 1
u1t1

, t1, t, P 0
tv, v) andPxy =

(x, x1, P 1
x1w1 , w1, w, P 0

wy, y). Hence,Puv and Pxy are
two equal disjoint paths of length2n − 1 in TQn × K2.

Case 2: Three end vertices belong toTQi
n and another

end vertex belongs toTQ1−i
n , i = 0, 1.

Without loss of generality, letu, v, x ∈ V (TQ0
n) and

y ∈ V (TQ1
n). Lety0 be the neighbors ofy in TQ0

n. Letw
be a vertex inTQ0

n andw /∈ {u, v, x, y0}. By hypothesis,
there exist two equal disjoint pathsP 0

uv andP 0
xw of length

2n−1 − 1 in TQ0
n. Let (s, t) ∈ P 0

uv andy0 /∈ {s, t}. Let
P 0

uv = 〈u, P 0
us, s, t, P

0
tv, v〉.

Let s1, t1, w1 be the neighbors ofs, t, w in TQ1
n,

respectively. Note that there exist two equal disjoint
paths P 1

s1t1
and P 0

w1y
of length 2n−1 − 1 in TQ1

n.
Let Puv = 〈u, P 0

us, s, s
1, P 1

s1t1
, t1, t, P 0

tv, v〉 andPxy =
〈x, Pxw, w, w1, Pw1y, y〉. Then, Puv and Pxy are two
equal disjoint paths of length2n − 1 in TQn × K2.

Case 3: u, v belong toTQi
n andx, y belong toTQ1−i

n ,
i = 0, 1.

Without loss of generality, letu, v ∈ V (TQ0
n) and

x, y ∈ V (TQ1
n). By Lemma 2, there exist two pathsPuv

andPxy of equal length2n − 1 in TQ0
n andTQ1

n, respec-
tively.

Case 4: u, x (or u, y) belong toTQi
n andv, y (or v, x)

belong toTQ1−i
n , i = 0, 1.

Without loss of generality, letu, x ∈ V (TQ0
n) and

v, y ∈ V (TQ1
n). Let v0, y0 be the neighbors ofv, y

in TQ0
n, respectively. Lets, w be two vertices except

u, x, v0, y0 in TQ0
n and lets1, w1 be the neighbors of

s, w in TQ1
n, respectively. LetPus and Pxw be two

disjoint paths of length2n−1 − 1 in TQ0
n. Let Ps1v

and Pw1y be two disjoint paths of length2n−1 − 1 in
TQ1

n. Let Puv = 〈u, Pus, s, s
1, Ps1v, v〉 and Pxy =

〈x, Pxw, w, w1, Pw1y, y〉. ThenPuv andPxy be two dis-
joint paths of lengths2n − 1 in TQn × K2.

2

Next we formally show the main result thatTQn, n ≥
5, is globally two-disjoint equal path coverable.

Theorem 1 Twisted cube, TQn, is globally two-equal-
disjoint path coverable for n ≥ 5.

Proof. We prove this theorem by induction onn. The base
case isTQ5. With Lemma 5, the base case holds. By in-
duction hypothesis, we can assume thatTQn is globally
two-equal-disjoint path coverable. Now, we need to show
thatTQn+2 is also globally two-equal-disjoint path cov-
erable. Letu, v andx, y be two distinct source-destination
pairs ofTQn+2. In the following, we establish two dis-
joint pathsPuv, Pxy of length2n+1−1. Herein, we divide
the proof into two cases according to which subgraphs,
TQ0,i

n

⋃
TQ1,i

n , the four vertices exactly belong to as fol-
lows.

Case 1: The four vertices u, v, x, y exactly be-
long to one of the two subgraphsTQ0,i

n

⋃
TQ1,i

n and
TQ1,1−i

n

⋃
TQ1,1−i

n .
Without loss of generality, leti = 0. By Lemma

6, there exist two disjoint paths, denoted asP 0
uv and

P 0
xy, of length 2n − 1 in TQ0,0

n

⋃
TQ1,0

n . Let s and
w be the neighbor ofu and x on pathsP 0

uv and P 0
xy,

respectively. LetP 0
uv = 〈u, s, P 0

sv, v〉 and P 0
xy =

〈x,w, P 0
wy, y〉. Let u1, s1, x1, w1 be the neighbors of

verticesu, s, x, w in TQ0,1
n

⋃
TQ1,1

n , respectively. By
Lemma 6, there also exist two disjoint paths, denoted as
P 1

u1s1 and P 1
x1w1 , of length2n − 1 in TQ0,1

n

⋃
TQ1,1

n .
Hence,Puv = 〈u, u1, P 1

u1s1 , s1, s, P 0
sv, v〉 and Pxy =

〈x, x1, P 1
x1w1 , w1, w, P 0

wy, y〉 are two disjoint paths of
length2n+1 − 1 in TQn+2.

Case 2:The four verticesu, v, x, y exactly belong to the
two subgraphsTQ0,0

n

⋃
TQ1,0

n andTQ0,1
n

⋃
TQ1,1

n .
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Herein, we in advanced divide this case into three sub-
cases as follows.

Subcase 2.1:Three end vertices belong toTQ0,i
n

⋃
TQ1,i

n

and another vertex belongs toTQ0,1−i
n

⋃
TQ1,1−i

n .
Without loss of generality, let u, v, x ∈

V (TQ0,0
n )

⋃
V (TQ1,0

n ) andy ∈ V (TQ0,1
n )

⋃
V (TQ1,1

n ).
Let vertexy0 ∈ V (TQ0,0

n )
⋃

V (TQ1,0
n ) be a neighbor

of y. Let w be a neighbor ofx in TQ0,0
n

⋃
TQ1,0

n ex-
cept u, v and y0. By Lemma 3, there exist pathP 0

uv

of length2n+1 − 3 in TQ0,0
n

⋃
TQ1,0

n exceptw andx.
Let (s, t) be a edge on pathP 0

uv with y0 /∈ {s, t}. Let
P 0

uv = 〈u, P 0
us, s, t, P

0
tv, v〉. Let verticess1, t1, w1 ∈

V (TQ0,1
n )

⋃
V (TQ1,1

n ) be the neighbors ofs, t, w, re-
spectively. By Lemma 3, there exist pathPw1y of length
2n+1 − 3 in TQ0,1

n

⋃
TQ1,1

n excepts1 andt1.

Let Puv = 〈u, P 0
us, s, s

1, t1, t, P 0
tv, v〉 and Pxy =

〈x,w,w1, Pw1y, y〉. Clearly,Puv andPxy are two disjoint
paths of length2n+1 − 1.

Subcase 2.2:Each pair has one vertex inTQ0,i
n

⋃
TQ1,i

n

and another vertex inTQ0,1−i
n

⋃
TQ1,1−i

n .
Without

loss of generality, letu, x ∈ V (TQ0,0
n )

⋃
V (TQ1,0

n )
and v, y ∈ V (TQ0,1

n )
⋃

V (TQ1,1
n ). Let u1, x1 ∈

V (TQ0,1
n )

⋃
V (TQ1,1

n )
andv0, y0 ∈ V (TQ0,0

n )
⋃

V (TQ1,0
n ) be the neighbors of

u, v andv, y, respectively. Lets andw be two vertices in
TQ0,0

n

⋃
TQ1,0

n exceptu, x, v0, y0. Let s1 andw1 be the
neighbors ofs andw, respectively, inTQ0,1

n

⋃
TQ1,1

n .

By Lemma 6, there exist two disjoint pathsP 0
us,

P 0
xw in TQ0,0

n

⋃
TQ1,0

n and exist two disjoint paths
P 1

s1v
, P 1

w1y
in TQ0,1

n

⋃
TQ1,1

n of length2n − 1, respec-
tively. ThenPuv = 〈u, P 0

us, s, s
1, P 1

s1v
, v〉 and Pxy =

〈x, P 0
xw, w, w1, P 1

w1y
, y〉 are two disjoint paths of length

2n+1 − 1.

Subcase 2.3:One pair belongs toTQ0,i
n

⋃
TQ1,i

n and an-
other pair belongs toTQ0,1−i

n

⋃
TQ1,1−i

n .
Without

loss of generality, letu, v ∈ V (TQ0,0
n )

⋃
V (TQ1,0

n ) and
x, y ∈ V (TQ0,1

n )
⋃

V (TQ1,1
n ). By Lemma 3, there ex-

ist two disjoint pathsPuv in TQ0,0
n

⋃
TQ1,0

n andPxy in
TQ0,1

n

⋃
TQ1,1

n ,respectively, of length2n+1 − 1. 2

4 Conclusion

In this paper, we discussed the two-equal-disjoint path
coverable problem and proved that Twisted CubesTQn

are globally two-equal-disjoint path coverable forn ≥ 5.
The globally two-equal-disjoint path coverable problem

is a extension of Hamiltonian connected problem. We can
see Hamiltonian connected problem as globally one-path
coverable problem, and then we extended this property
to globally two-equal-disjoint path coverable. This work
may help to discuss the many-to-many disjoint path cov-
erable problem.
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