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摘要 

(n, k)-星狀圖（簡稱 Sn,k）是一個超立

方體的極佳替代圖，也是 n-星狀圖的一般

化版本。Sn,n−1 與 n-星狀圖是同構的，且

Sn,1 亦與 n-完全圖同構。n-星狀圖已經被證

明包含所有長度從 6 到 n!的偶數迴圈。而

本研究則證明了當 1 ≤ k ≤ n−4 及 n ≥ 6
時，Sn,k 的任一節點包含於長度在 3 到

|V(Sn,k)|之間的迴圈。另外，當 n−3 ≤ k ≤ n−2 
時，Sn,k 的任一節點包含於長度為 6 到

|V(Sn,k)|的迴圈。此外，在 Sn,k 中所建構的

每一個迴圈皆可包含一指定邊，且該邊包

含於某一 Sn−k+1,1 子圖中。 

關鍵詞：弱節點泛迴圈，內含迴圈，(n, k)-
星形圖，n-星形圖，互連網路 

Abstract 

The (n, k)-star graph (Sn,k for short) is 
an attractive alternative to the hypercube and 
also a generalized version of the n-star. It is 
isomorphic to the n-star (n-complete) graph 
if k = n−1 (k = 1). Jwo et al. have already 
demonstrated in 1991 that an n-star contains 

a cycle of every even length from 6 to n!. 
This work shows that every vertex in an Sn,k 
lies on a cycle of length l for every 3 ≤ l ≤ 
n!/(n−k)! when 1 ≤ k ≤ n−4 and n ≥ 6. 
Additionally, for n−3 ≤ k ≤ n−2, each vertex 
in an Sn,k is contained in a cycle of length 
ranged from 6 to n!/(n−k)!. Moreover, each 
constructed cycle of an available length in 
an Sn,k can contain a desired 1-edge. 

Keywords: Weak-vertex-pancyclicity, cycle 
embedding, (n, k)-star graph, n-star graph, 
interconnection networks 

1 Introduction 

The n-star graph (Sn for short), which 
proposed by Akers et al. in 1987, is an 
attractive alternative to the hypercube with 
vertex and edge symmetry [1]. An Sn is a 
Cayley graph with a regular and hierarchical 
structure; for a similar number of vertices, 
the graph has a lower vertex degree, a 
smaller diameter, and a shorter average 
distance than the comparable hypercube. 
However, with the restriction on the number 
of vertices: n!, there is a large gap between n! 
and (n+1)! for expanding an Sn to an Sn+1. 

To relax the restriction of the numbers 



of vertices n! in an Sn, a generalized version 
of the star graph, the (n, k)-star graph, was 
proposed in 1995 [4]. An Sn,k preserves 
many attractive properties of an Sn such as 
vertex symmetry, hierarchical structure, 
maximal fault tolerance, and simple shortest 
routing. The two parameters n and k can be 
tuned to make a suitable choice for the 
number of vertices in the network and for 
the degree/diameter tradeoff. An Sn,k is 
regular of degree n−1, and the number of 
vertices is n!/(n−k)!. 

Some basic properties of an Sn,k, such 
as diameter [4], connectivity [4], 
broadcasting [7], average distance [5], 
embedding [6], Hamiltonicity [8], spanning 
connectivity [9], and wide diameter [11], 
have recently been computed or derived. 
These measurement results demonstrate that 
an Sn,k has excellent topological properties. 

Path and cycle are two of the most 
fundamental networks for parallel and 
distributed computation, and suitable for 
designing simple algorithms with low 
communication costs. The pancyclicity of a 
network represents its power of embedding 
cycles of all possible lengths. A graph G of 
order |V(G)| is called pancyclic whenever G 
contains a cycle of each length l for 3 ≤ l ≤ 
|V(G)| [3]. Various generalizations of 
pancyclic graphs have been studied, such as 
Hypercube and Pyramid graphs. A graph G 
is bipancyclic if it has a cycle of every even 
length from 4 to |V(G)|. A graph G is 
vertex-pancyclic (vertex-bipancyclic) if 
every vertex lies on a cycle of every length 
(every even length) from 3 (4) to |V(G)|. An 
m-weak-pancyclic (m-weak-bipancyclic) 
graph is a graph which contains a cycle of 
every length (every even length) l for m ≤ l 
≤ |V(G)|. Additionally, a graph G is 
m-weak-vertex-pancyclic (m-weak-vertex- 
bipancyclic) if every vertex lies on a cycle 
of every length (every length) from m to 
|V(G)|. Jwo et al. showed that an Sn contains 
a cycle of every even length from 6 to n! 
[10]. Since an Sn is vertex symmetric [1], it 
is 6-weak-vertex-bipancyclic. This work 
further investigates the m-weak-vertex- 

pancyclicity of Sn,k graphs. 
The rest of this paper is organized as 

follows. Section 2 formally defines the Sn,k 
in terms of graph (or interconnection 
networks). Section 3 demonstrates how to 
embedded cycles in an Sn,k graph is proved. 
Conclusions are finally drawn in Section 4. 

2 Background and Notations 

This section formally presents the 
structure of the (n, k)-star graph and studies 
some basic properties of it. 

For simplicity, let 〈n〉 = {1, 2, …, n}, 
〈k〉 = {1, 2, …, k}, and two positive integers 
n and k satisfy 1 ≤ k ≤ n−1. An Sn,k is 
specified by two integers n and k, where 1 ≤ 
k ≤ n−1. The vertex set of it is denoted by 
{p1p2…pk⏐pi ∈ 〈n〉 and pi ≠ pj for i ≠ j}. The 
adjacency is defined as follows: 
p1p2…pi…pk is adjacent to (1) pip2…p1…pk 
through an edge of dimension i, where 2 ≤ i 
≤ k, and (2) xp2…pk through dimension 1, 
where x ∈ 〈n〉 − {pq⏐1 ≤ q ≤ k}. 

The edges of type (1) are referred to as 
i-edges and the two endvertices are 
i-neighbors to each other. The edges of type 
(2) are referred to as 1-edges, the two 
endvertices are 1-neighbors to each other 
[11]. The structure of an S4,2 is shown in Fig. 
1. 

 

Fig. 1.  The structure of an S4,2. 

Let Sn−1,k−1(ω) denote a subgraph of an 



Sn,k, induced by all the vertices with the 
same last symbol ω, for some 1 ≤ ω ≤ n. By 
the structure of (n, k)-star graph, 1-edges 
and i-edges still remain what they are in 
Sn−j,k−j for 1 ≤ j ≤ k−1 and 1 ≤ i ≤ k−j. 

An Sn,k can be formed by 
interconnecting n Sn−1,k−1’s. Fig. 1 shows that 
S4,2 can be viewed as an interconnection of 
S3,1(ω)’s, 1 ≤ ω ≤ 4, through 2-edges. That is, 
an Sn,k can be decomposed into Sn−1,k−1’s 
along any dimension i, and it can also be 
decomposed into n vertex-disjoint Sn−1,k−1’s 
in k−1 different ways by fixing the symbol 
in any position i, 2 ≤ i ≤ k [4], [5]. This 
decomposition can be recursively carried out 
on each Sn−1,k−1 to obtain smaller subgraphs. 

A graph is said to be vertex (edge) 
symmetric if for every pair of vertices 
(edges), a and b, there exists an 
automorphism of the graph that maps a into 
b. The Sn,k is undirected and vertex 
symmetric [4], but two different types of 
edges (1-edge and i-edge for 2 ≤ i ≤ k) in the 
Sn,k prevent it from being edge symmetric. 
As shown in Fig. 1, each 2-edge belongs to a 
cycle of length at least 6, but each 1-edge 
may be within a cycle of length 3. However, 
there is still conditional edge-symmetric 
which was proved as follows. 
Lemma 1 [5]. In an Sn,k, every 1-edge is 
edge-symmetric with any other 1-edge. 
Lemma 2 [5]. In an Sn,k, every i-edge is 
edge-symmetric with any other i-edge, 2 ≤ i 
≤ k. 

According to Lemmas 1 and 2, an Sn,k 
is j-edge-symmetric for 1 ≤ j ≤ k. Some 
interesting topological properties of an Sn,k 
used in Section 3 are stated as follows. 
Lemma 3 [12]. In an Sn,k, a cycle has a 
length at least 6 if it contains one i-edge, 2 ≤ 
i ≤ k. 
Lemma 4 [11]. The Sn,1 is isomorphic to the 
Kn, which is a complete graph. 
Lemma 5 [11]. The Sn,n−1 is isomorphic to 
the Sn. 
Lemma 6 [4]. There are (n–2)!/(n–k)! k- 

edges between any two subgraphs Sn−1,k−1(α) 
and Sn−1,k−1(β) in an Sn,k; each of these 
vertices in an Sn−1,k−1(α) is connected to 
exactly one vertex in Sn−1,k−1(β), where 1 ≤ α, 
β ≤ n and α ≠ β. 

3 Cycle Embedding 

Lemma 4 indicates that Sn,1 is 
vertex-pancyclic for trivial. Chiang already 
proved that Sn, which is isomorphic to Sn,n−1 
(Lemma 5), contains a cycle of every even 
length from 6 to n! [10]. Since Sn is vertex 
symmetric, Sn,n−1 is 6-vertex-bipancyclic. In 
the following, the vertex-pancyclicity of Sn,2 
is first shown, and then the vertex- 
pancyclicity of Sn,k is proved by induction 
on k for 3 ≤ k ≤ n−4. Finally, the two special 
cases of Sn,n−2 and Sn,n−3 is also discussed. 

In the remainder of this section, let p 
→(j) q denote that vertices p and q is 
connected by a j-edge. Moreover, p ⇒ q is 
defined as a spanning path in an Sn−1,k−1 from 
p to q. Since an S3,2 is isomorphic to S3, 
which is 6-weak-vertex-bipancyclic, only 
the pancyclicity or weak-pancyclicity of 
each Sn,2 for n ≥ 4 is discussed in Lemmas 7 
and 8. 
Lemma 7. An Sn,2 is vertex-pancyclic for n 
≥ 6. Moreover, each cycle of an available 
length in an Sn,2 can contain a desired 
1-edge. 

Proof. Sn,2 is composed of n Sn−1,1(ω)’s, 
where 1 ≤ ω ≤ n. Lemma 4 reveals that an 
Sn−1,1(ω) is isomorphic to a Kn−1, which has 
cycles of length ranged from 3 to n−1. Next, 
a cycle of length ranged from n to n(n−1) 
contained in at least three Sn−1,1(ω)’s is build 
step by step as follows. 

1. Adopt 1-edge and 2-edge to connect the 
first three Sn−1,1(ω)’s. Let p = p1p2 be the 
source vertex in the Sn,2 and xt ∈ 〈n〉 − 
{pq⏐1 ≤ q ≤ 2}, where 3 ≤ t ≤ n. 
According to Lemma 3, a cycle in an Sn,2 



containing a 2-edge has length at least 6. 
Lemma 6 indicates that there exists one 
2-edge between any two Sn−1,1(ω)’s. A 
cycle of length 6 can be built as p →(2) 
p2p1 →(1) x3p1 →(2) p1x3 →(1) p2x3 →(2) 
x3p2 →(1) p. 

2. The constructed cycle visits Sn−1,1(p2), 
Sn−1,1(p1), and Sn−1,1(x3). Because a 
complete graph (such as an Sn−1,1) is 
vertex-pancyclic, a cycle of any length 
containing any edge in it could be 
constructed easily. Adopting the 1-edge 
(p2p1, x3p1) in the Sn−1,1(p1) to build a 
cycle of length n−4 in it; a cycle of 
length n can be constructed after 
removing edge (p2p1, x3p1) as shown in 
Fig. 2. Notably, in the remainder of this 
paper, each of Figs. 2–8 explicitly 
indicates the number of vertices in each 
subpath of a cycle. 

 
Fig. 2.  A cycle of length n in an Sn,2. 

3. By adding vertices in these three Sn−1,1’s, 
which are excluded by the cycle 
constructed in Step 2, into the cycle 
one-by-one, a cycle of length ranged 
from n+1 to 3n−3 can be established. Fig. 
3 illustrates the cycle of length 3n−3. 

4. To add the Sn−1,1(x4), for constructing a 

cycle of length 3n−2, remove the path in 
Sn−1,1(p2) and Sn−1,1(x3), a new cycle of 
length n+5 containing four subgraphs is 
form as p →(2) p2p1 ⇒(1) x3p1 →(2) p1x3 
→(1) x4x3 →(2) x3x4 →(1) p2x4 →(2) x4p2 
→(1) p. 

 
Fig. 3.  A cycle of length 3n−3 in an Sn,2. 

5. Build cycles of length n−1 and n−2 with 
the edge (p1x3, x4x3) in Sn−1,1(x3) and the 
edge (x3x4, p2x4) in Sn−1,1(x4), a cycle of 
length 3n−2 can be obtained after 
eliminating the edges (p1x3, x4x3) and 
(x3x4, p2x4) as shown in Fig. 4. Referring 
to Steps 3, a cycle of length ranged from 
3n−1 to 4n−4 can be established. 

 
Fig. 4.  A cycle of length 3n−2 in an Sn,2. 

6. Refer to Steps 3 to 5 to build a cycle of 
length ranged from 4n−3 to n(n−1). The 
longest cycle is constructed as p → (2) 



p2p1 ⇒ x3p1 →(2) p1x3 ⇒ x4x3 →(2) x3x4 
⇒…→(2) xn−1xn ⇒ p2xn →(2) p. 

Obviously, all constructed cycles 
contain 1-edges. Therefore, according to 
Lemma 1, each constructed cycle in an Sn,2 
can contain a desired 1-edge.  � 
Lemma 8. S4,2 and S5,2 are both 6-weak- 
vertex-pancyclic. 

Proof. The proof is similar to that of Lemma 
7. An S4,2 (S5,2) is composed of 4 S3,1’s (5 
S4,1’s) and has a cycle of length l for l = 3 (l 
= 3, 4). Moreover, Lin and Duh showed that 
the length of a cycle containing an i-edge is 
at least 6 [12]. Therefore, the S4,2 (S5,2) has 
no cycles of length 4 (4 and 5). Let p = p1p2 
be the source vertex in the S4,2 (S5,2) and xt ∈ 
〈n〉 − {pq⏐1 ≤ q ≤ 2}, where 3 ≤ t ≤ 4 (3 ≤ t ≤ 
5). Three basic cycles of length 6, 8 and 10 
can be built in S4,2 and S5,2 as follows. 

1. Cycle 1: p →(2) p2p1 →(1) x3p1 →(2) p1x3 
→(1) p2x3 →(2) x3p2 →(1) p. 

2. Cycle 2: p →(2) p2p1 →(1) x3p1 →(2) p1x3 
→(1) x4x3 →(2) x3x4 →(1) p2x4 →(2) x4p2 
→(1) p. 

3. Cycle 3: p →(2) p2p1 →(1) x3p1 →(2) p1x3 
→(1) x4x3 →(2) x3x4 →(1) x5x4 →(2) x4x5 
→(1) p2x5 →(2) x5p2 →(1) p. 

First, expand Cycle 1 by adding 
vertices one-by-one in the S4,2 (S5,2) to 
construct a cycle of length ranged from 7 to 
9 (12). Second, expand Cycle 2 in the S4,2 
(S5,2) to construct a cycle of length ranged 
form 9 to |V(S4,2)|=12 (16). Finally, expand 
Cycle 3 by including the S4,1(x5) of the S5,2 
to built a cycle of length l for 11 ≤ l ≤ 
|V(S5,2)| = 20. � 

Restated, an S3,2 is a S3. According to 
Lemma 5 and [10], an S3,2 is 6-weak- 

vertex-bipancyclic. Lemma 8 indicates that 
an S4,2 (S5,2) is 6-weak-vertex-pancyclic. An 
S4,2 (S5,2) is the induction base for proving 
the 6-weak-vertex-pancyclicity of an Sn,n−2 
(Sn,n−3) for n ≥ 5 (n ≥ 6). The 6-weak- 
vertex-pancyclicity of an Sn,n−2 (Sn,n−3) is 
demonstrated in Lemma 11. Hsu et al. 
showed that an Sn,k has a spanning cycle of 
length |V(Sn,k)| [8]. Moreover, an Sn,k is 
composed of n!/(n−k+1)! Sn−k+1,1’s (or 
Kn−k+1). Therefore, by Lemmas 1 and 6, any 
1-edge can be contained in a spanning cycle 
of an Sn,k. 
Lemma 9. Every spanning cycle of an Sn,k, n 
> k ≥ 2, including a given 1-edge contains 
another 1-edge which is endvertex-disjoint 
to the given one. 

Proof. Since n > k ≥ 2, there exist n (≥ 3) 
Sn−1,k−1(ω)’s in the Sn,k, where 1 ≤ ω ≤ n. 
Thus, at least n−1 (≥ 2) 1-edges are 
endvertex-disjoint to the given 1-edge. � 

According to Lemma 9, two 
disjoint-paths containing all vertices of an 
Sn−1,k−1(ω) can be built for n > k ≥ 3. This 
property is used to constructed a cycle of 
length at least (n−k+2)|V(Sn−1,k−1)|+1 in an 
Sn,k as described in Step 6 of the proof of 
Lemma 10. 

Since an S5,1 is a K5, only the 
vertex-pancyclicity of an Sn,k for 3 ≤ k ≤ n−4 
and n ≥ 6 is presented in the following. 
Lemma 10. An Sn,k is vertex-pancyclic for 3 
≤ k ≤ n−4 and n ≥ 6. Moreover, each cycle of 
an available length in an Sn,k can contain a 
desired 1-edge. 

Proof. Recall that an Sn,1 is an Kn and 
vertex-pancyclic. According to Lemma 7, 
Sδ,2 is vertex-pancyclic and each constructed 
cycle can contain a desired 1-edge in it for 6 
≤ δ ≤ n. This lemma is proved by induction 
on n and k, and adopts an Sδ,2 as the basis, 
where 6 ≤ δ ≤ n. Let p = p1p2…pk, xt ∈ 〈n〉 − 
{pq⏐1 ≤ q ≤ k} and N = |V(Sn−1,k−1)|, where 
k+1 ≤ t ≤ n, l = (n−k+2)N (l = (n−k+1)N) for 



k is even (odd), and η = n (η = n−1) for k is 
even (odd). Assume that an Sn−1,k−1 is 
vertex-pancyclic and each constructed cycle 
can contain a desired 1-edge in the Sn−1,k−1. 
Hence, constructing a cycle of length 
smaller than or equal to N in an Sn,k is trivial. 
Only the cycle of length ranged from N+1 to 
nN should be discussed as follows. Notably, 
the constructed cycle must contain at least 
three Sn−1,k−1’s in the Sn,k. 

1. According to Lemma 3, a cycle in an Sn,k 
containing a k-edge has length at least 6. 
Lemma 6 indicates that there exist 
(n–2)!/(n–k)! k-edges between any two 
Sn−1,k−1(ω)’s, where 1 ≤ ω ≤ n. A cycle of 
length 6 containing 2 vertices in each of 
the included Sn−1,k−1(ω)’s is built with 
1-edges and k-edges as 

p →(k) pkp2p3…pk−1p1 
 →(1) xk+1p2p3…pk−1p1 
 →(k) p1p2…pk−1xk+1 
 →(1) pkp2p3…pk−1xk+1 
 →(k) xk+1p2p3…pk 
 →(1) p. 

2. Lemma 1 indicates that an Sn−1,k−1(ω) is 
1-edge-symmetric for 1 ≤ ω ≤ n. 
Therefore, a cycle of length at most N 
can be constructed in the Sn−1,k−1(ω) and 
the cycle can contains any 1-edge. Build 
a cycle of length N−3 in the Sn−1,k−1(p1) 
including the specified 1-edge 
(pkp2p3…pk−1p1, xk+1p2p3…pk−1p1). After 
removing the specified 1-edge, a cycle of 
length N+1, can be constructed by 
expanding the cycle constructed in Step 
1. 

3. The cycle constructed in Step 2 can be 

increased by including vertices in 
Sn−1,k−1(p1), Sn−1,k−1(xk+1), and Sn−1,k−1(pk), 
which are excluded in Step 2. Finally, a 
cycle of length ranged from N+2 to 3N 
can be obtained. 

4. To add the Sn−1,k−1(xk+2) for constructing 
a cycle of length 3N+1, remove the path 
in Sn−1,k−1(pk) and Sn−1,k−1(xk+1). A cycle of 
length N+6 is first formed as  

p →(k) pkp2p3…pk−1p1 
 ⇒ xk+1p2p3…pk−1p1 
 →(k) p1p2…pk−1xk+1 
 →(1) xk+2p2p3…pk−1xk+1 
 →(k) xk+1p2p3…pk−1xk+2 
 →(1) pkp2p3…pk−1xk+2 
 →(k) xk+2p2p3…pk 
 →(1) p. 

Second, build two cycles of lengths N 
and N−1 in Sn−1,k−1(pk) and Sn−1,k−1(xk+1) 
containing the 1-edges (xk+2p2p3…pk, p) 
and (p1p2…pk−1xk+1, xk+2p2p3…pk−1xk+1), 
respectively. A cycle of length 3N+1 can 
be obtained after eliminating the two 
specified 1-edges. 

5. Referring to Steps 3 and 4, a cycle of 
length ranged from 3N+2 to l can be 
similarly constructed. Moreover, the 
constructed cycle only use 1-edges and 
k-edges to connect Sn−1,k−1(p1), 
Sn−1,k−1(pk), and Sn−1,k−1(xt) for k+1 ≤ t ≤ η. 
Notably, the Sn−1,k−1(xn) is not joined in 
this step when k is odd. The cycle of 
length l is constructed as follows and 
shown in Fig. 5. 

p →(k) pkp2p3…pk−1p1 
 ⇒ xk+1p2p3…pk−1p1 
 →(k) p1p2…pk−1xk+1 



 ⇒ xk+2p2p3…pk−1xk+1 
 →(k) xk+1p2p3…pk−1xk+2 
 ⇒… 
 ⇒ xk+sp2p3…pk−1xk+s−1 
 →(k) xk+s−1p2p3…pk−1xk+s 
 ⇒… 
 →(k) xη−1p2p3…pk−1xη 
 ⇒ pkp2p3…pk−1xη 
 →(k) xηp2p3…pk 
 ⇒ p, where 1 ≤ s ≤ η−k−1. 

 
Fig. 5.  A cycle of length l. 

Let R = {γ | γ = pq for 2 ≤ q ≤ k−1} (R = 
{γ | γ = pq or xn for 2 ≤ q ≤ k−1}) if k is 
even (odd). Significantly, every Sn−1,k−1(γ) 
does not included in the constructed 
cycle. 

6. Rebuild a path containing N−3 vertices 
from pkp2p3…pk−1p1 to xk+1p2p3…pk−1p1 
in Sn−1,k−1(p1). According to Lemma 9, 
there exists a 1-edge (u, v) other than the 
1-edge (xηp2p3…pk, p) in the current 
cycle and the Sn−1,k−1(pk) such that vertex 
u (v) has a k-neighbor in the Sn−1,k−1(α) 
(Sn−1,k−1(β)), where α, β ∈ R and α ≠ β. 
Remove α and β from the set R. A cycle 
of length l+1 can be constructed by 
removing the 1-edge (u, v) and including 
two vertices in each of Sn−1,k−1(α) and 

Sn−1,k−1(β) as shown in Fig. 6. 

 
Fig. 6.  A cycle of length l+1. 

7. By adding vertices one-by-one in 
Sn−1,k−1(p1), Sn−1,k−1(α), and Sn−1,k−1(β), 
which are excluded by the cycle 
constructed in Step 6, a cycle of length 
ranged from l+2 to l+2N can be 
obtained. 

8. Referring to Steps 6 and 7, a cycle of 
length ranged from l+2N+1 to nN can be 
similarly built by removing 2 elements 
from the set R every time until it is 
empty. 

Significantly, all constructed cycles 
contain 1-edges. Therefore, according to 
Lemma 1, each constructed cycle in an Sn,k 
can contain a desired 1-edge. � 
Lemma 11. An Sn,n−2 (Sn,n−3) is 6-weak- 
vertex-pancyclic for n ≥ 5 (n ≥ 6). Moreover, 
each cycle of an available length in an Sn,n−2 
(Sn,n−3) can contain a desired 1-edge. 

Proof. This proof is similar to that of 
Lemma 10. Because an Sn,n−2 (Sn,n−3) has no 
cycles of length 4 (4 and 5), some 
construction should be modified as follows. 
Let k = n−2 (k = n−3) for the Sn,n−2 (Sn,n−3) 
and N represents the number of vertices in 
an Sn−1,k−1. 

1. Lemma 8 indicates that an Sn−1,k−1 only 



contains every cycle of length l for 6 ≤ l 
≤ N. In other words, a cycle of length 
ranged from 6 to N can be constructed 
and it can contain a desired 1-edge. 

2. Referring to Steps 1 to 3 of Lemma 10, a 
cycle of length ranged from N+1 to N+4 
can be built similarly. Notably, each 
vertex in the constructed cycle is 
contained in Sn−1,k−1(p1), Sn−1,k−1(pk), or 
Sn−1,k−1(xk+1). 

3. First, rebuild a path of length N–3 in the 
Sn−1,k−1(p1), and construct a cycle of 
length 6 in the Sn−1,k−1(pk). Notably, an 
S4,2 (or an S5,2) is a subgraph of an 
Sn−1,k−1(ω), where 1 ≤ ω ≤ n, and it 
contains a cycle of length 6 by Lemma 8. 
Second, After removing the specified 
1-edge in the Sn−1,k−1(pk), a cycle of 
length N+5 can be built as shown in Fig. 
7. Referring to Step 3 of the proof of 
Lemma 10, a cycle of length ranged 
from N+6 to 3N can be constructed. 

6

N+5

Sn 1,k 1(xk+1)

Sn 1,k 1(p1)

Sn 1,k 1(pk)

Sn 1,k 1(xk+s)

Sn 1,k 1(xk+2) 2

N 3

Sn 1,k 1(pq)

2 q k–1
       and
1 s n k–1  

Fig. 7.  A cycle of length N+5. 

4. According to Step 4 of the proof of 
Lemma 10, a cycle of length 3N+1 can 
be similarly established as shown in Fig. 
8. Significantly, every time expanding 
the cycle by including a subgraph, a path 

of length 6 is constructed in the just 
included subgraph and a path of length 
N−5 is rebuilt in one of the other 
subgraphs containing some vertices of 
the cycle. 

N

3N+1

Sn 1,k 1(xk+1)

Sn 1,k 1(xk+2)

Sn 1,k 1(pk)

Sn 1,k 1(p1)

Sn 1,k 1(pq)

N 5

N

6

Sn 1,k 1(xk+s)

2 q k–1
       and
1 s n k–1  

Fig. 8.  A cycle of length 3N+1. 

5. Referring to Step 3 of the proof of 
Lemma 10, a cycle of length ranged 
from 3N+2 to 4N can be similarly 
established by including vertices. 

6. Referring to Steps 5 to 8 of the proof of 
Lemma 10 but the paths in just included 
two subgraphs contain 6 and N−5 
vertices, respectively, a cycle of length 
ranged from 4N+1 to nN can be similarly 
built. 

Restated, all constructed cycles contain 
1-edges. Therefore, according to Lemma 1, 
each constructed cycle in an Sn,n−2 (Sn,n−3) 
can contain a desired 1-edge. � 
Theorem 12. An Sn,k is 

⎩⎪
⎨
⎪⎧vertex-pancyclic  if 1 ≤ k ≤ n−4
6-weak-vertex-pancyclic  if n−3 ≤ k ≤ n−2
6-weak-vertex-bipancyclic if k = n−1.

Moreover, each cycle of an available length 
in an Sn,k can contain a desired 1-edge. 

4 Conclusion 

Although an Sn in general is not 



vertex-pancyclic, the weak-pancyclicity of 
an Sn is revealed in this work. Chang and 
Kim already showed that an Sn (or Sn,n−1) is 
6-weak-vertex-bipancyclic. Trivially, a Kn is 
vertex-pancyclic. This work shows that an 
Sn,k is vertex-pancyclic if 2 ≤ k ≤ n−4 and n 
≥ 6, and an Sn,k is 6-weak-vertex-pancyclic if 
n−3 ≤ k ≤ n−2. Thus, an Sn,k is vertex- 
pancyclic for 1 ≤ k ≤ n−4 and n ≥ 6, 6-weak- 
vertex-pancyclic for n−3 ≤ k ≤ n−2, or 
6-weak-vertex-bipancyclic if k = n−1. 
Significantly, each constructed cycle of an 
available length in an Sn,k can contain a 
desired 1-edge. 
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