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Abstract

The (n, k)-star graph (Snx for short) is
an attractive alternative to the hypercube and
also a generalized version of the n-star. It is
isomorphic to the n-star (n-complete) graph
if k =n-1 (k =1). Jwo et al. have already
demonstrated in 1991 that an n-star contains

a cycle of every even length from 6 to n!.
This work shows that every vertex in an Sp
lies on a cycle of length | for every 3 <| <
n!/(n-k)! when 1 < k < n-4 and n > 6.
Additionally, for n—3 < k < n-2, each vertex
in an Sk is contained in a cycle of length
ranged from 6 to n!/(n—k)!. Moreover, each
constructed cycle of an available length in
an S,k can contain a desired 1-edge.

Keywords: Weak-vertex-pancyclicity, cycle
embedding, (n, k)-star graph, n-star graph,
interconnection networks

1 Introduction

The n-star graph (S, for short), which
proposed by Akers et al. in 1987, is an
attractive alternative to the hypercube with
vertex and edge symmetry [1]. An S, is a
Cayley graph with a regular and hierarchical
structure; for a similar number of vertices,
the graph has a lower vertex degree, a
smaller diameter, and a shorter average
distance than the comparable hypercube.
However, with the restriction on the number
of vertices: n!, there is a large gap between n!
and (n+1)! for expanding an S, to an Sp.1.

To relax the restriction of the numbers



of vertices n! in an Sy, a generalized version
of the star graph, the (n, k)-star graph, was
proposed in 1995 [4]. An S,k preserves
many attractive properties of an S, such as
vertex symmetry, hierarchical structure,
maximal fault tolerance, and simple shortest
routing. The two parameters n and k can be
tuned to make a suitable choice for the
number of vertices in the network and for
the degree/diameter tradeoff. An S,k is
regular of degree n-1, and the number of
vertices is n!/(n—k)!.

Some basic properties of an S, such
as diameter [4], connectivity [4],
broadcasting [7], average distance [5],
embedding [6], Hamiltonicity [8], spanning
connectivity [9], and wide diameter [11],
have recently been computed or derived.
These measurement results demonstrate that
an S, ¢ has excellent topological properties.

Path and cycle are two of the most
fundamental networks for parallel and
distributed computation, and suitable for
designing simple algorithms with low
communication costs. The pancyclicity of a
network represents its power of embedding
cycles of all possible lengths. A graph G of
order [V(G)| is called pancyclic whenever G
contains a cycle of each length | for 3 <1 <
[V(G)| [3]. Various generalizations of
pancyclic graphs have been studied, such as
Hypercube and Pyramid graphs. A graph G
is bipancyclic if it has a cycle of every even
length from 4 to |V(G)|. A graph G is
vertex-pancyclic  (vertex-bipancyclic) if
every vertex lies on a cycle of every length
(every even length) from 3 (4) to |V(G)|. An
m-weak-pancyclic (m-weak-bipancyclic)
graph is a graph which contains a cycle of
every length (every even length) | for m <
< |V(G)|. Additionally, a graph G is
m-weak-vertex-pancyclic  (m-weak-vertex-
bipancyclic) if every vertex lies on a cycle
of every length (every length) from m to
[V(G)|. Jwo et al. showed that an S, contains
a cycle of every even length from 6 to n!
[10]. Since an S, is vertex symmetric [1], it
is 6-weak-vertex-bipancyclic. This work
further investigates the m-weak-vertex-

pancyclicity of S,k graphs.

The rest of this paper is organized as
follows. Section 2 formally defines the Spx
in terms of graph (or interconnection
networks). Section 3 demonstrates how to
embedded cycles in an S, graph is proved.
Conclusions are finally drawn in Section 4.

2 Background and Notations

This section formally presents the
structure of the (n, k)-star graph and studies
some basic properties of it.

For simplicity, let (n) = {1, 2, ..., n},
(k) ={1, 2, ..., k}, and two positive integers
n and k satisfy 1 < k < n-1. An Spx is
specified by two integers n and k, where 1 <
k < n-1. The vertex set of it is denoted by
{pwp2...p«| pi € (n) and p; # p; for i # j}. The
adjacency is defined as follows:
p1P2...Pi...Pk is adjacent to (1) pipz...P1.--Pk
through an edge of dimension i, where 2 <'i
< k, and (2) xpz...p«x through dimension 1,
where X € <n>—{pq|1£qsk}.

The edges of type (1) are referred to as
i-edges and the two endvertices are
i-neighbors to each other. The edges of type
(2) are referred to as 1-edges, the two
endvertices are 1-neighbors to each other
[11]. The structure of an S, is shown in Fig.
1.

Fig. 1.

The structure of an Sy ».

Let Sp-1x-1(w) denote a subgraph of an



Snk, induced by all the vertices with the
same last symbol @, for some 1 < w < n. By
the structure of (n, k)-star graph, 1-edges
and i-edges still remain what they are in
Snjkjforl<j<k-landl1l<i<k-.

An S,k can be formed by
interconnecting n Sp_1x-1’s. Fig. 1 shows that
S4» can be viewed as an interconnection of
Sz31(w)’s, 1 < w < 4, through 2-edges. That is,
an Spx can be decomposed into Sp1x-1’S
along any dimension i, and it can also be
decomposed into n vertex-disjoint Sp_1x-1’S
in k-1 different ways by fixing the symbol
in any position i, 2 < i < k [4], [5]. This
decomposition can be recursively carried out
on each Sp_1 k1 to obtain smaller subgraphs.

A graph is said to be vertex (edge)
symmetric if for every pair of vertices
(edges), a and b, there exists an
automorphism of the graph that maps a into
b. The Snx is undirected and vertex
symmetric [4], but two different types of
edges (1-edge and i-edge for 2 <i <k) in the
Snk prevent it from being edge symmetric.
As shown in Fig. 1, each 2-edge belongs to a
cycle of length at least 6, but each 1-edge
may be within a cycle of length 3. However,
there is still conditional edge-symmetric
which was proved as follows.

Lemma 1 [5]. In an S,y every l-edge is
edge-symmetric with any other 1-edge.

Lemma 2 [5]. In an S,k every i-edge is
edge-symmetric with any other i-edge, 2 <'i
<k.

According to Lemmas 1 and 2, an Spx
is j-edge-symmetric for 1 < j < k. Some
interesting topological properties of an S,y
used in Section 3 are stated as follows.

Lemma 3 [12]. In an S,k a cycle has a
length at least 6 if it contains one i-edge, 2 <
i <Kk.

Lemma 4 [11]. The Sy is isomorphic to the
Ky, which is a complete graph.

Lemma 5 [11]. The Sy,-1 Is isomorphic to
the S,.

Lemma 6 [4]. There are (n-2)!/(n-k)! k-

edges between any two subgraphs S,-1 k-1()
and Sp1x-1(f) Iin an S,k each of these
vertices in an S,_ix1(a) is connected to
exactly one vertex in Sp_1 x-1(f), where 1 < «,
p<nand a= g

3 Cycle Embedding

Lemma 4 indicates that Sp; IS
vertex-pancyclic for trivial. Chiang already
proved that S,, which is isomorphic to S, n-1
(Lemma 5), contains a cycle of every even
length from 6 to n! [10]. Since S, is vertex
symmetric, Snn-1 IS 6-vertex-bipancyclic. In
the following, the vertex-pancyclicity of S,
is first shown, and then the vertex-
pancyclicity of S,k is proved by induction
on k for 3 < k < n—4. Finally, the two special
cases of Sp 2 and Sy, 3 is also discussed.

In the remainder of this section, let p
—) Qg denote that vertices p and q is
connected by a j-edge. Moreover, p = q is
defined as a spanning path in an S;_; 1 from
p to g. Since an Sz, is isomorphic to Ss,
which is 6-weak-vertex-bipancyclic, only
the pancyclicity or weak-pancyclicity of
each S, for n > 4 is discussed in Lemmas 7
and 8.

Lemma 7. An S, is vertex-pancyclic for n
> 6. Moreover, each cycle of an available
length in an S,, can contain a desired
1-edge.

Proof. S,, is composed of n S, 11(®)’s,
where 1 < @ < n. Lemma 4 reveals that an
Sn-1.1(®) is isomorphic to a K,_;, which has
cycles of length ranged from 3 to n—1. Next,
a cycle of length ranged from n to n(n-1)
contained in at least three S,_11(@)’s is build
step by step as follows.

1. Adopt 1-edge and 2-edge to connect the
first three Sy_1,1(®)’s. Let p = pip2 be the
source vertex in the S,, and x; € (n) —
{pq\l < q < 2} where 3 <t <n
According to Lemma 3, a cycle inan Sy,



containing a 2-edge has length at least 6.
Lemma 6 indicates that there exists one
2-edge between any two Sp1i1(@)’s. A
cycle of length 6 can be built as p —
P2P1 —(1) XsP1 =) P1iXs =) P2Xs =)
X3P2 =) P-

2. The constructed cycle visits S,_11(p2),

Sn11(p1), and Sp11(xs). Because a
complete graph (such as an S, 1j) is
vertex-pancyclic, a cycle of any length
containing any edge in it could be
constructed easily. Adopting the 1-edge
(p2p1, X3p1) in the Sp_11(p1) to build a
cycle of length n—4 in it; a cycle of
length n can be constructed after
removing edge (pz2p1, Xsp1) as shown in
Fig. 2. Notably, in the remainder of this
paper, each of Figs. 2-8 explicitly
indicates the number of vertices in each
subpath of a cycle.

Sp11 ([72)

Si11(x3)

Sp-1.1(x4)

Fig. 2. Acycle of length nin an Sy .

3. By adding vertices in these three Sy_11’s,

which are excluded by the cycle
constructed in Step 2, into the cycle
one-by-one, a cycle of length ranged

from n+1 to 3n-3 can be established. Fig.

3 illustrates the cycle of length 3n-3.

4. To add the S,-11(xs), for constructing a

Fi

Sy

Fi

cycle of length 3n—2, remove the path in
Sn-11(p2) and Sn-11(x3), a new cycle of
length n+5 containing four subgraphs is
form as p —() p2P1 =) XsP1 ) PaXs
=) XaX3 —>2) XsXa —>(1) P2Xa —>2) XaP2
—@ P

Sn-i ([72)

,'/ \\\‘\\ Sn—l W1 (x n)
Sp-1,1(x4) :

g.3. Acycle of length 3n-3 in an S, ».

Build cycles of length n—1 and n-2 with
the edge (piXs, X4X3) in Sp-11(X3) and the
edge (XsXs, P2X4) In Sp-11(Xs), @ cycle of
length 3n-2 can be obtained after
eliminating the edges (piXs, Xs4X3) and
(X3X4, P2X4) as shown in Fig. 4. Referring
to Steps 3, a cycle of length ranged from
3n-1 to 4n—4 can be established.

Sn—ll(pz)

1,1(x3)

Sml . (xn)
Sp1,1(x4) \‘

g.4. Acycle of length 3n-2 in an S, .

6. Refer to Steps 3 to 5 to build a cycle of

length ranged from 4n-3 to n(n-1). The
longest cycle is constructed as p — ()



P2P1 = X3P1 =) P1X3 = XaX3 —>(2) X3X4
=...—>@2) Xn-1Xn = P2Xn =2 P.

Obviously, all constructed cycles

contain 1-edges. Therefore, according to

Lemma 1, each constructed cycle in an S,
can contain a desired 1-edge. 0

Lemma 8. S;» and Ss, are both 6-weak-
vertex-pancyclic.

Proof. The proof is similar to that of Lemma
7. An S45 (Ss2) is composed of 4 S3i’s (5
S41’s) and has a cycle of length | for | = 3 (I
= 3, 4). Moreover, Lin and Duh showed that
the length of a cycle containing an i-edge is
at least 6 [12]. Therefore, the S42 (Ss2) has
no cycles of length 4 (4 and 5). Let p = p1p2
be the source vertex in the S4, (Ss2) and x; €
(n}—{pq\1£q£2},where3£ts4(Sgts
5). Three basic cycles of length 6, 8 and 10
can be built in S4, and Ss, as follows.

1. Cycle 1: p —() p2p1 =) X3P1 =) P1Xs
—(1) P2X3 —(2) X3P2 =) P-

2. Cycle 2: p =) p2p1 =) X3P1 —>@) P1Xs
—>(1) XaX3 —>2) X3X4 —>(1) P2Xa —>2) XaP2

—@) P-

3. Cycle 3: p =) P2P1 =) X3P1 =) P1X3
—>@) XaX3 =) X3Xq4 —>@) Xs5Xq4 —>(2) XaXs
(1) P2Xs —(2) XsP2 —>1) P-

First, expand Cycle 1 by adding
vertices one-by-one in the S;, (Ss2) to
construct a cycle of length ranged from 7 to
9 (12). Second, expand Cycle 2 in the S,
(Ss») to construct a cycle of length ranged
form 9 to |V(Ss2)|=12 (16). Finally, expand
Cycle 3 by including the S41(xs) of the Ss»
to built a cycle of length | for 11 < | <
IV(Ss2)| = 20. N

Restated, an S, is a Ss. According to
Lemma 5 and [10], an S3, is 6-weak-

vertex-bipancyclic. Lemma 8 indicates that
an S (Ss2) is 6-weak-vertex-pancyclic. An
Ss42 (Ss2) is the induction base for proving
the 6-weak-vertex-pancyclicity of an Sp,-2
(Snns) for n > 5 (n > 6). The 6-weak-
vertex-pancyclicity of an Syn2 (Shn-3) IS
demonstrated in Lemma 11. Hsu et al.
showed that an S,k has a spanning cycle of
length |V(Shx)| [8]. Moreover, an S,k is
composed of nl/(n—k+1)! Sp1’s (or
Kn-k+1). Therefore, by Lemmas 1 and 6, any
1-edge can be contained in a spanning cycle
of an Spx.

Lemma 9. Every spanning cycle of an Sy, n
> k > 2, including a given 1-edge contains
another 1-edge which is endvertex-disjoint
to the given one.

Proof. Since n > k > 2, there exist n (> 3)
Sn-1k-1(@)’s in the Sk, where 1 < @w < n.
Thus, at least n-1 (> 2) 1-edges are
endvertex-disjoint to the given 1-edge. O

According to Lemma 9, two
disjoint-paths containing all vertices of an
Sn-1x-1(@) can be built for n > k > 3. This
property is used to constructed a cycle of
length at least (n—k+2)|V(Sp-1x-1)|+1 in an
Snk as described in Step 6 of the proof of
Lemma 10.

Since an Ss; is a Ks, only the
vertex-pancyclicity of an S,y for 3 <k <n-4
and n > 6 is presented in the following.

Lemma 10. An S, is vertex-pancyclic for 3
<k <n-4and n > 6. Moreover, each cycle of
an available length in an S,k can contain a
desired 1-edge.

Proof. Recall that an S,; is an K, and
vertex-pancyclic. According to Lemma 7,
Ss2 Is vertex-pancyclic and each constructed
cycle can contain a desired 1-edge in it for 6
< 6 < n. This lemma is proved by induction
on n and k, and adopts an S;, as the basis,
where 6 <5< n. Let p = pipz2...pk, Xt € (n) —
{pq |1 <q<k}and N = [V(Snvx1)|, Where
k+1 <t<n, = (n—k+2)N (I = (n—k+1)N) for



k is even (odd), and 7=n (7 =n-1) fork is
even (odd). Assume that an Sy IS
vertex-pancyclic and each constructed cycle
can contain a desired 1-edge in the Sp_q k1.
Hence, constructing a cycle of length
smaller than or equal to N in an Sy is trivial.
Only the cycle of length ranged from N+1 to
nN should be discussed as follows. Notably,
the constructed cycle must contain at least
three Sp_1x-1’s in the Sy

1. According to Lemma 3, a cycle in an Sy
containing a k-edge has length at least 6.
Lemma 6 indicates that there exist
(n-2)!/(n—k)! k-edges between any two
Sn-1x1(@)’s, where 1 < w < n. A cycle of
length 6 containing 2 vertices in each of
the included Sp 1x-1(@)’s is built with
1-edges and k-edges as

P =@k PxP2Ps. .. Pk-1P1
—>(1) Xk+1P2P3- .. Pr-1P1
—>K) P1P2- - Pr—1Xk+1
—> (1) PkP2P3. .. Pr-1Xk+1
—>(K) Xk+1P2P3. .. Pk
— P

2. Lemma 1 indicates that an Sy_1x_1(@) is
1-edge-symmetric for 1 < o < n.
Therefore, a cycle of length at most N
can be constructed in the Sp_1x-1(w) and
the cycle can contains any 1-edge. Build
a cycle of length N-3 in the Sp_1x-1(p1)
including  the  specified  1-edge
(PkP2Ps3. .. Pk-1P1, Xk+1P2P3...Pk-1P1). After
removing the specified 1-edge, a cycle of
length N+1, can be constructed by
expanding the cycle constructed in Step
1.

3. The cycle constructed in Step 2 can be

increased by including vertices in
Sn-1k-1(P1), Sn-1k-1(Xk+1), and Sp-1x-1(Px),
which are excluded in Step 2. Finally, a
cycle of length ranged from N+2 to 3N
can be obtained.

. To add the Sp_1k-1(Xk2) for constructing

a cycle of length 3N+1, remove the path
in Sp-1x-1(px) and Sp_1 xk-1(Xk+1). A cycle of
length N+6 is first formed as

P =@ PxP2Ps...Pr-1P1

= Xk+1P2P3. .. Pk-1P1

—>K) P1P2- - Pr—1Xk+1

—>(1) Xk+2P2P3. . . Pr-1Xk+1

—>(K) Xk+1P2P3. - - Pr-1Xk+2

—>(1) PkP2P3. .. Pr-1Xk+2

—>(K) Xk+2P2P3. .. Pk

— P
Second, build two cycles of lengths N
and N-1 in Sy 1x1(px) and Sp-1x-1(Xk+1)
containing the 1-edges (Xk+2P2pP3---Pk, P)
and (P1P2...Pk-1Xk+ls Xk+2P2P3. .. Pk-1Xk+1),
respectively. A cycle of length 3N+1 can
be obtained after eliminating the two
specified 1-edges.

Referring to Steps 3 and 4, a cycle of
length ranged from 3N+2 to | can be
similarly constructed. Moreover, the
constructed cycle only use 1-edges and
k-edges to  connect  Sp_1k-1(p1),
Sn-1k-1(pk), and Sp_1 k-1(X) for k+1 <t < ».
Notably, the Sp_1k-1(Xn) is not joined in
this step when k is odd. The cycle of
length | is constructed as follows and
shown in Fig. 5.

P —>k) PkP2P3...Pxk-1P1
= Xk+1P2P3-..Pk-1P1
—>K) P1P2. .. Pr-1Xk+1



= Xk+2P2P3- - - Pr-1Xk+1

—>(K) Xk+1P2P3. . - Pr-1Xk+2
=>...

= Xk+sP2P3. . . Pr-1Xk+s-1

—>(K) Xk+s-1P2P3. .+ - Pu—1Xk+s
=>...

(k) Xp-1P2P3. .. Pr-1Xy

= PkP2P3...Px-1X5

() XyP2P3-.. Pk

= p, where 1 <s < np—k-1.

Snfn.kfl(xkﬂ?/‘” ’’’’’ Se1x(Pe)
an_kfl(ff?) Lot N \
\ E::gf\"*‘(a)
N .o lS.s‘; k-1,

a, B=p, (@, f=p, or
x,) if k is even (odd)
for2<g<k-1

Fig. 5. Acycle of length I.

LetR={y| y=pqfor2<q<k-1} R=
{y| y=pqorx,for2<q<k-1})ifkis
even (odd). Significantly, every S,_1x-1(%)
does not included in the constructed
cycle.

Rebuild a path containing N-3 vertices
from pkpzps...pr-1P1 t0 Xks1P2P3.--Pr-1P1
in Sp-1x1(p1). According to Lemma 9,
there exists a 1-edge (u, v) other than the
1-edge (X;P2ps...px, P) in the current
cycle and the Sp_1x-1(px) such that vertex
u (v) has a k-neighbor in the Sp_1k-1(@)
(Sn-1x-1(), where o, f € R and a = S.
Remove « and g from the set R. A cycle
of length I+1 can be constructed by
removing the 1-edge (u, v) and including
two vertices in each of S, 1x1(a) and

Sn-1k-1(f) as shown in Fig. 6.

Sn— J— (-x .\') T I
11 (), v S

ﬂi%{—l.k—l (@)

1<s< k-1,

/@ B=p,(a B=p,or

x,) if k is even (odd)
for2<q<i-1

- )

Fig. 6. Acycle of length I+1.

7. By adding vertices one-by-one in
Sn-1k1(P1), Snak-1(@), and Sp1x-1(A),
which are excluded by the cycle
constructed in Step 6, a cycle of length
ranged from [+2 to I|+2N can be
obtained.

8. Referring to Steps 6 and 7, a cycle of
length ranged from 1+2N+1 to nN can be
similarly built by removing 2 elements
from the set R every time until it is
empty.

Significantly, all constructed cycles
contain 1-edges. Therefore, according to

Lemma 1, each constructed cycle in an Spx
can contain a desired 1-edge. O

Lemma 11. An Syn2 (Spns) is 6-weak-
vertex-pancyclic for n > 5 (n > 6). Moreover,
each cycle of an available length in an Sy -2
(Snn-3) can contain a desired 1-edge.

Proof. This proof is similar to that of
Lemma 10. Because an Spn-2 (Snn-3) has no
cycles of length 4 (4 and 5), some
construction should be modified as follows.
Let k = n—2 (k = n-3) for the Syn2 (Snn-3)
and N represents the number of vertices in
an Sp-1 k-1.

1. Lemma 8 indicates that an Sp_1x-1 only



contains every cycle of length | for 6 <1
< N. In other words, a cycle of length
ranged from 6 to N can be constructed
and it can contain a desired 1-edge.

2. Referring to Steps 1 to 3 of Lemma 10, a
cycle of length ranged from N+1 to N+4
can be built similarly. Notably, each
vertex in the constructed cycle is
contained in Sp_1x-1(P1), Sn-1k-1(PK), Or
Sn-1k-1(Xk+1).

3. First, rebuild a path of length N-3 in the
Sh-1k-1(p1), and construct a cycle of
length 6 in the S, 1x-1(pk). Notably, an
Sap (or an Ss,) is a subgraph of an
Sn1k1(®), where 1 < @ < n, and it
contains a cycle of length 6 by Lemma 8.
Second, After removing the specified
l-edge in the Sy_1x1(pk), a cycle of
length N+5 can be built as shown in Fig.
7. Referring to Step 3 of the proof of
Lemma 10, a cycle of length ranged
from N+6 to 3N can be constructed.

Sn—l,k—l(Xk+s)/,~.’""“~\\

Peea.

2<q<k-1
and
1<s<n-k-1

Fig. 7. Acycle of length N+5.

4. According to Step 4 of the proof of
Lemma 10, a cycle of length 3N+1 can
be similarly established as shown in Fig.
8. Significantly, every time expanding
the cycle by including a subgraph, a path

of length 6 is constructed in the just
included subgraph and a path of length
N-5 is rebuilt in one of the other
subgraphs containing some vertices of
the cycle.

Sn-t k1 (Kiert) e
SNy SeakalPd

Sn-1k-1(Xir2)
@ e

ot 2<q<k1
and
1<s<n-k-1

T Sn—l,k—].(pq)\\“"wﬂ/“"/

Fig. 8. Acycle of length 3N+1.

5. Referring to Step 3 of the proof of
Lemma 10, a cycle of length ranged
from 3N+2 to 4N can be similarly
established by including vertices.

6. Referring to Steps 5 to 8 of the proof of
Lemma 10 but the paths in just included
two subgraphs contain 6 and N-5
vertices, respectively, a cycle of length
ranged from 4N+1 to nN can be similarly
built.

Restated, all constructed cycles contain

1-edges. Therefore, according to Lemma 1,

each constructed cycle in an Spno (Shn3)
can contain a desired 1-edge. 0

Theorem 12. An Sp is
vertex-pancyclic if1<k<n-4
{G-Weak-vertex-pancyclic ifn-3<k<n-2
6-weak-vertex-bipancyclic if k = n-1.
Moreover, each cycle of an available length
in an Spx can contain a desired 1-edge.

4 Conclusion

Although an S, in general is not



vertex-pancyclic, the weak-pancyclicity of
an S, is revealed in this work. Chang and
Kim already showed that an S, (or Spn_1) is
6-weak-vertex-bipancyclic. Trivially, a K, is
vertex-pancyclic. This work shows that an
Snk Is vertex-pancyclic if 2 <k <n—4 and n
> 6, and an Sy is 6-weak-vertex-pancyclic if
n—3 < k < n-2. Thus, an S,k is vertex-
pancyclic for 1 <k <n-4 and n > 6, 6-weak-
vertex-pancyclic for n-3 < k < n-2, or
6-weak-vertex-bipancyclic if k = n-L1.
Significantly, each constructed cycle of an
available length in an S,k can contain a
desired 1-edge.
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