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Abstract

In this article, we introduce 2RP-property in the aug-
mented cube AQ,,: Let {u,v,x,y} beany four distinct
vertices of AQ,. Let [y and [> be two integers with
li >dag,(u,v),ls > dag, (x,y),andly +1; = 2" —2.
Then there exist two digoint paths P; and P, such that
(1) P isapathjoiningu and v with (Py) = 1, (2) Py is
apath joining x and y with [(P2) = Iz, and (3) P, U P,
spans AQ,, except some special conditions.

Keywords: hamiltonian, augmented cubes.

1 Introduction

I nterconnection networks play animportant rolein par-
allel computing/communication systems. The graph em-
bedding problem is a central issue in evauating a net-
work. The graph embedding problem asked if the quest
graphisasubgraph of a host graph, and an important ben-
efit of the graph embeddingsis that we can apply existing
algorithm for guest graphs to host graphs. This problem
has attracted a burst of studiesin recent years. Cycle net-
works and path networks are suitable for designing simple
algorithms with low communication costs. The cycle em-
bedding problem, which dealswith all possible lengths of
the cyclesin agiven graph, isinvestigated in alot of inter-



connection networks [6, 10, 12, 13]. The path embedding
problem, which dealswith all possiblelengths of the paths
between given two vertices in a given graph, is investi-
gated in alot of interconnection networks[3-5, 12-14].

In this article, a network is represented as a loopless
undirected graph. For the graph definitions and nota-
tion, we follow [1]. Let G = (V, E) be a graph if V/
is afinite set and F is a subset of {(a,b) | (a,b) isan
unordered pair of V'}. We say that V' is the vertex set
and FE is the edge set. Two vertices v and v are adja-
cent if (u,v) € E. We use Nbdg(u) to denote the set
{v | (u,v) € E(G)}. The degree of a vertex u in G,
denoted by deg (u), is|Nbdg(u)|. We use §(G) to de-
note min{degq(u) | v € V(G)}. A graphis k-regular
if degg;(u) = k for every vertex u in G. A path is a se-
quence of adjacent vertices, written as (vg, v1, ..., Um),
inwhich al the verticesvg, vy, . . ., v, aredistinct except
that possibly vy = v,,,. Weasowritethe path (vg, P, vy, ),
where P = (vg, v1, . .., vm ). Thelength of apath P, de-
noted by I(P), isthe number of edgesin P. Letu and v be
two vertices of GG. The distance between « and v denoted
by d¢ (u, v) isthe length of the shortest path of G joining
u and v. The diameter of a graph G, denoted by D(G),
ismax{dg(u,v) | u,v € V(G)}. A cycleisapath with
at least three vertices such that the first vertex is the same
as the last one. A hamiltonian cycle is a cycle of length
V(@). A hamiltonian path is a path of length V' (G) — 1.

The hypercube @ ,, is one of the most popular intercon-
nection networks for parallel computer/comminication
system [11]. This is partly due to its attractive prop-
erties, such as regularity, recursive structure, vertex and
edge symmetry, maximum connectivity, as well as effec-
tive routing and broadcasting algorithm. The augmented
cube AQ,, is a variation of @Q,,, proposed by Choudum
and Sunitha[2], and not only retains some favorabl e prop-

erties of (Q,, but also processes some embedding proper-
tiesthat Q,, doesnot [2,7-9, 13]. For example, AQ ,, con-
tains cycles of al lengths from 3 to 2™, but @,, contains
only even cycles.

For the path embedding problem on the augmented
cube, Ma et al. [13] proved that between any two dis-
tinct verticesx and y of AQ,,, thereexistsapath P;(x,y)
of length [ with daq, (x,y) < I < 2" — 1. Obvi-
ously, we expect that such a path P;(x,y) can be fur-
ther extended by including the vertices not in P;(x,y)
into a hamiltonian path from x to a fixed vertex z or
a hamiltonian cycle. For this reason, we prove that for
any three distinct vertices x, y and z of AQ,, and for
any dag, (x,y) <1 <2"—1-dag,(y,z) there ex-
ists a hamiltonian path R(x,y,z;!) from x to z such
that dpxy.z)(X,y) = L
that for any two distinct vertices x and y, and for any
dag, (x,y) <1< 27! there exists a hamiltonian cycle
S(x,y; 1) suchthat dg(x ) (x,y) = 1.

In the following section, we introduce the definition
and some properties of the augmented cubes. In Section
3, we introduce the 2RP-property for the augmented cube
AQ,, and prove that AQ,, satisfies the 2RP-property if
n > 2. We make some remarksto illustrate that some in-
teresting properties of augmented cubes are consequences
of 2RP-property in the final section.

As a corollary, we prove

2 Preliminaries

In this section, we introduce some properties of the
augmented cubes. Assumethat n > 1 is aninteger. The
graph of the n-dimensional augmented cube, denoted by
AQ,, has 2™ vertices, each labeled by an n-bit binary
string V(AQ,) = {wug...u, | u; € {0,1}}. For
n = 1, AQ, is the graph K, with vertex set {0, 1}.
For n > 2, AQ,, can be recursively constructed by two



copies of AQ,,_1, denoted by AQ® ;| and AQL_,, and
by adding 2" edges between AQ" _, and AQ._, asfol-
lows:

Let V(AQY_|) = {Ougusz...u, | u; = 0or1 for
2<i<n}andV(AQ! ;) = {lvavs...v, |v; =0o0r
1for2 <i < n}. Avertexu = Ougus . ..u, of AQ%_,
is adjacent to avertex v = 1vavs ... v, of AQL_, if and
only if one of the following cases holds.

(i) u; = wv;, for2 <i < n.lInthiscase, (u,v)iscaleda
hypercube edge. We set v = u”.

(i) u; = v, for2 < i < n. Inthiscase, (u,v) iscaled
acomplement edge. We set v = u®.

The augmented cubes AQ, AQ2, AQ3 and AQ,4 are
illustrated in Figure 1. It is proved in [2] that AQ,, isa
vertex trangitive, (2n—1)-regular, and (2n— 1)-connected
graph with 2™ vertices for any positive integer n. Let i be
any index with1 < ¢ < nandu = wujusus...u, be
avertex of AQ,. We use u’ to denote the vertex v =
V1V203 . .. Uy SUCh that u; = v; with1 < j # ¢ < nand
u; = v;. Moreover, we use u** to denote the vertex v =
V1V203 . . . Uy, SUCh that u; = v; for j < iandu; = v; for
i < j < n. Obvioudy, u” = u™, u! = u”, u® = u'*,
and Nbodag, (u) ={u’ |1 <i<nju{u*|1<i<

Lemma 1. Assumethat n > 2. Then |[Nbdag, (u) N
Nbdag, (v)| > 2if (u,v) € E(G).

Proof. We prove this lemma by induction. Since AQ -
isisomorphic to the complete graph K 4, the lemma holds
for n = 2. Assumethe lemmaholdsfor 2 < k& < n. Sup-
posethat {u,v} C V(A4Q:_,) for somei € {0,1}. By
induction, |[Nbd aq, (u) N Nbdag, (v)| > 2. Thus, con-
sider the case that either v = u” or v = u®. Obviously,

{u2*,u0} C NbdAQn (u) n NbdAQn (v) if v = uh,; and
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Figure 1: The augmented cubes AQ1, AQ2, AQs
AQ..

and

{u?*,;ul} C Nbdag, (0)NNbdag, (v)if v=uc. Then
the statement holds. O

The following lemma can easily be obtained from the
definition of AQ,,.

Lemma 2. Assume that n > 3. For any two different
vertices u and v of AQ,,, there exists two other vertices
x and y of AQ,, such that the subgraph of {u,v,x,y}
containing a four cycle.

Lemma 3. [8] Let F' be a subset of V(AQ,). Then
there exists a hamiltonian path between any two vertices
of V(AQ,) — Fif|[F| <2n—4forn>4and |F| <1

for n = 3.

Lemma4. [2] Let u and v be any two verticesin AQ,,
with n > 2. Suppose that both u and v are in AQ°,
fori=0,1. Thendaq, (u,v) = dyg: | (u,v). Suppose
that u isa vertexin AQ?,_, and v isavertexin AQ. 7.
Then there exist two shortest paths P, and P of AQ.,
joining u to v such that (V(P;) — {v}) C V(4Q}_,)
and (V(P,) — {u}) € V(AQL7)).

With Lemmad4, we have the following corollary.

Corollary 5. Assume that n > 3. Let x and y be two
vertices of AQ,, with dag, (x,y) > 2. Then, there are



two vertices p and q in Nbd g, (x) with dag,, (p,y) =
daq,(q,y) = dag,(x,y) — 1.

Lemma6. [8] Let {u,v,x,y} beany four distinct ver-
tices of AQ,, with n > 2. Then there exist two digjoint
paths P, and P, such that (1) P; isa pathjoining u and
v, (2) P» isapathjoining x and y, and (3) P; U P, spans
AQ,.

We refer to Lemma 6 as 2P-property of the augmented
cube. This property is used for many applications of the
augmented cubes [7,8]. Obvioudly, [(P1) > dag, (u, V)
and [(Ps) > dag, (x,y), and [(Py) + [(Py) = 2™ — 2.
We expect that I(Py), hence, [(P,) can be an arbitrarily
integer with the above constraint. However, such expec-
tation is almost true. Let us consider AQ 3. Suppose that
u = 001, v = 110, x = 101, and y = 010. Thus,
dag,(u,v) = 1 and dag,(x,y) = 1. We can find
P, and P, with I(P;) € {1,3,5}. Notethat {x,y} =
Nbdag,(u) N Nbdag,(v). We can not find P; with
I(Py) =2. Again, {u,v} = Nbdag,(x) N Nbdag,(y).
We can not find P, with[(P,) = 2. Hence, we cannot find
Py with(Py) = 4. Similarly, we consider AQ 4. Suppose
that u = 0000, v = 1001, x = 0001 and y = 1000.
Thus, dag,(u,v) = 2 and dag,(x,y) = 2. We can
find P, and P, with [(P;) € {3,4,...,11}. Note that
{x,¥} = Nbdag,(u) N Nbdag,(v). We can not find
Py with [(P1) = 2. Again, {u,v} = Nbdag,(x) N
Nbdag, (y). Wecannot find P, with [(P,) = 2.

3 The2RP-property of the
augmented cubes

In this section, we introduce the 2RP-property for the
augmented cube AQ,, and prove that AQ,, satisfies the
2RP-property if n > 2. First, we propose the 2RP-
property of AQ, withn > 2: Let {u,v,x,y} beany

four distinct vertices of AQ,,. Let [; and [5 be two in-
tegers with Iy > dag, (u,v), l2 > dag, (x,y), and
Iy + 1y = 2™ — 2. Then there exist two digoint paths
P, and P, such that (1) P; is a path joining u and v
with I[(P1) = 13, (2) P> isa path joining x and y with
I(P2) = I3, and (3) P, U Py spans AQ),, except for the
following cases: (a) I1 = 2 with dag, (u,v) = 1 such
that {x,y} = Nbdag, (u) N Nbdag, (v); (b) lo = 2
with dag, (x,y) = 1 suchthat {u,v} = Nbdag, (x) N
Nbdag, (y); (€) l1 = 2with dag, (u,v) = 2 such that
{x,y} = Nbdag, (u) N Nbdag, (v); and (d) I = 2
with dag, (x,y) = 2 such that {u, v} = Nbdag, (x) N
Nbd aq, (y)-

Theorem 7. Assume that » is a positive integer with n >
2. Then AQ),, satisfies 2RP-property.

Proof. We prove this theorem by induction. By brute
force, we check the theorem holds for n = 2,3,4. As
sume the theorem holds for any AQx with4 < k < n.
Without loss of generality, we can assume that [; > Is.
Thus, I, < 27~! —1. By the symmetric property of AQ,,,
we can assume that at least one of u and v, say u, isin
V(AQC_,). Thus, we have the following cases:

Casel ve V(AQ"_,)and {x,y} C V(4QL_)).
Subcase 1.1: daq, (x,y) < o < 2771 — 3 except that
Dl =2"""1—4dand(2) Iy = 2if dag, (x,y) = 1 or
2 with {u, v} # Nbdag, (x) N Nbdag, (y). See Fig-
ure 2(a) for an illustration. By Lemma 3, there exists
a hamiltonian path R of AQC_; joining u to v. Since
I(R) =2""! —1,wecanwrite R as (u, Ry, p,q, R, V)
for some verticesp and q such that {p”, q"} N {x,y} =
(). By induction, there exist two disjoint paths S; and
Sy such that (1) S; is a path joining p* to q" with
1(S1) = 2"t — Iy — 2, (2) Sy isapath joining x to y
with [(S3) = Iz, and (3) S1 U Sz spans AQL ;. We set



Pl as <ll, Rlvpvphaslvqtha R27v> and set P2 as SQ-
Obviously, P; and P, are the required paths.

RS

(b)

Figure 2: Subcase 1.1 and Subcase 1.3.

Subcase 1.2: I, = 2 if dag,(x,y) = 1 or 2 with
{u,v} # Nbdag, (x) N Nbdag, (y). Obviously, there
exists a path P, of length 2 in AQ,, — {u, v} joining x
toy. By Lemma 3, there exists a hamiltonian path P, of
AQ,, — V(P,) joining u to v. Obviously, P, and P, are
the required paths.

Subcase 1.3: [, = 2"~ ! — 4. SeeFigure 2(b) for anillus-
tration. Obviously, thereexistsavertexp in vV (AQL_;)—
{x,y,u" v}, avertex q in Nbdsgr  (p) — {x, ¥},

and avertex r in Nbod o1 (a) — {x,y,p}. Suppose
that r* ¢ {u,v}. By induction, there exist two dis-
joint paths @1 and Q2 such that (1) @, is a path join-
ing u to p”, (2) Q- is a path joining r”* to v, and (3)
Q1 U Q2 spans AQY_,. By Lemma 3, there exists a
hamiltonian path P, of AQL ; — {p,q,r} joining x to
y. Weset P as (u,Qq,p", p,q,r, ", Qa, v). Suppose
that r* € {u,v}. Without loss of generality, we assume
that r* = v. By Lemma 3, there exists a hamiltonian
path R of AQY_, — {v} joiningu to p". We set P, as
(u, R,p",p,q,r,r" = v). Obvioudy, P, and P, arethe
required paths.

Subcase 1.4: [, = 27~ ! — 2. Obviously, there exist a ver-
texp € V(AQL ;) —{x,y,u" u¢, v v¢}. By Lemma
6, there exists two digjoint paths @)1 and Q> such that (1)
Q isapathjoining u and p*, (2) Q- isapath joining p©
and v, and (3) Q1 UQ- spans AQ" _,. By Lemma3, there
exists a hamiltonian path P, of AQY_, — {p} joining x
toy. Weset Py as (u,Qy,p", p, p%, Q2,v). Obviously,
P, and P, are therequired paths.

Subcase 1.5: [, = 2"~ ! — 1. By Lemma3, there exists a
hamiltonian path P; of AQ?_, joining u and v and there
exists a hamiltonian path P> of AQ._; joining x to y.
Obviously, P, and P, are therequired paths.

Case2 v € V(AQY_,) and exactly oneof x and y isin
V(AQS_,). Without loss of generality, we assume that
x € V(AQ}_y).

Subcase 2.1: Iy = 1. Obviously, daq, (x,y) = 1. We
set P as (x,y). By Lemma3, there exists a hamiltonian
path P, of AQ,, — {x,y} joining u to v. Obviously, P;
and P, arethe required paths.

Subcase 2.2: I = 2if dag, (x,y) = 1 or 2 with
{u,v} # Nbdag, (x) N Nbdag, (y). The proof is the
sameto Subcase 1.2.

Subcase 2.3 I, = 3.



Supposethat d 40, (x,y) = 1. There exists a vertex p
in Nbdgqo _ (x) — {u,v}. By Lemma3, there exists a
hamiltonian path P, of AQ,, — {x,y, p, p"} joining u to
v. We set P, as (x,p,p",y). Obvioudy, P, and P, are
the required paths.

Suppose that dag, (x,y) = 2. By Lemma 4, there
exists a path (x,p,y) from x to y such that p €
V(AQL_y).
Nbdggr  (P) N Nbdyg:  (y). By Lemmas3, there ex-
ists a hamiltonian path P; of AQ,, — {x,y,p,q} joining
utov. Weset P, as (x,p,q,y). Obviously, P, and P,
aretherequired paths.

By Lemma 1, there exists a vertex q €

Suppose that dag, (x,y) = 3. By Lemma 4, there
existsapath P, fromx toy such that (V(Ps) — {x}) C
V(AQL ). By Lemma3, there exists a hamiltonian path
Py of AQ,, — V(P,) joining u to v. Obviously, P; and
P, arethe required paths.

Subcase2.4: 4 <y < 2"~ ! —2exceptthat i, = 2" ! —
3.

Supposethat d ¢, (x,y) = 1 or 2. Wefirst claim that
thereexistsavertex p in Nbd 4q,, (x) " Nbdag, (y). As-
sumethat dag, (x,y) = 1. Obvioudly, either y = x” or
y =x° Wesetp = x°if y = x"; andwe set p = x" if
y = x° Assumethat dag, (x,y) = 2. See Figure 3 for
an illustration. By Lemma 4, there exists a path (x, p, y)
from x to y such that p € V(4QL_,). Obviously, p
satisfies our claim. By Lemma 3, there exists a hamil-
tonian path R of AQ%_; — {x} joining u to v. Since
I(R) = 2"~! — 3, wecanwrite R as (u, Ry,s, t, R, V)
suchthat {s", t"} N {p,y} = 0. By induction, there exist
two digoint paths S; and S» suchthat (1) S; isapathjoin-
ings" to t" with[(S;) = 2"~1 — 1 — 15, (2) Sz isapath
joining p toy with 1(Sy) = I — 1, and (3) S7 U S, spans
AQL . Weset Py as (u, Ry,s,s", S1,t",t, Ry, v) and
Py as(x,p, Sa,y). Obviously, P, and P, aretherequired

paths.

Figure 3: Subcase 2.4.

Suppose that dag, (x,y) > 3. By Lemma 4, there
existsavertex p in V(AQL ;) such that dag, (p,y) =
dag, (x,y) — 1. By Lemma3, there exists a hamiltonian
path R of AQY | — {x} joining u to v. We can write R
as (u, Ry,s,t, Ry, v) such that {s" t"} n {p,y} = 0.
By induction, there exist two disjoint paths S; and S
such that (1) S; is apath joining s” to t" with [(S;) =
2=l — 1 — Iy, (2) S, is a path joining p to y with
1(S2) =1y —1,and (3) S1 U Sz spans AQL ;. Weset P,
as (u, Ry,s,s", S1,t" t, Ry, v) and P, as (x, p, S2,y).
Obviously, P; and P, arethe required paths.
Subcase25: 1, =271 —3o0rly =2""1—1.Letk =3
iflo=2""1—-3andk =1ifly =271 — 1. Thereex-
istsavertex pin Nbd 40 | (x) —{u,v,y"}. By Lemma
3, there exists a hamiltonian path R of AQ°%_, — {x,p}
joiningutov. Wecanwrite Ras (u, R4, s, t, R, v) such
that {s,t} N {p,y"} = 0. By induction, there exist two
digoint paths S; and S, such that (1) Sy is a path join-
ing s™ to t™ with [(S) = k, (2) S2 isapath joining p”
toy with[(Ss) = 2"~ — k — 2, and (3) S; U Sy spans
AQL . Weset Py as (u, Ry,s,s™, S1,t",t, Ry, v) and
P, as (x,p,p",S2,y). Obviously, P, and P, arethere-



quired paths.

Case3: {v,x,y} C V(Q%_,).

Subcase 3.1: [ = 1. The proof is the same as Subcase
2.1

Subcase 3.2: Iy = 2 if dag, (x,y) = 1 or 2 with
{u,v} # Nbdag, (x) N Nbdag, (y). The proof is the
same as Subcase 1.2.

Subcase 3.3: dag, (x,y) <l < 2"~2 — 1. SeeFigure
4(a) for an illustration. By induction, there exist two dis-
joint paths R, and R, such that (1) R, isapath joining u
tov withli(R;) =271 — Iy — 2, (2) Ry isapathjoining
x toy with [(Ry) = I, (3) R1 U Ry spans AQ"_,. We
canwrite Ry as (u, R3, p, q, R4, v). By Lemma 3, there
exists a hamiltonian path S of AQL_, joining p” to q".
Weset P, as(u, R3, p,p", S,q",q, R4, v) and P, as Ry.
Obviously, P; and P, are the required paths.

Subcase 3.4: 2772 +1 < Iy < 2"71 — 1 except that
l, = 272 4 2. See Figure 4(b) for an illustration. By
induction, there exist two digoint paths R, and R, such
that (1) R, isapathjoiningutov withi(R;) = 2""2 -1,
(2) Ry isapath joining x to y with [(Ry) = 272 — 1,
and (3) R U Ry spans AQY_,. We can write R; as
(u, R3,p,q, Ry, v) and write Ry &s (x, R5,s, t, Rg,y).
By induction, there exist two digoint paths S; and S,
such that (1) S, isapathjoining p” to g" with I(S;) =
2n=l [y + 2772 — 2 (2) S, isapath joining s” to t"
with [(S2) = lo — 2772, and (3) S; U Sy spans AQ}L ;.
We set P, as (u, R3,p,p", S1,9",q, Ry, v) and P, as
(x, Rs,s,s", S2,t" t, Rg,y). Obvioudly, P; and P, are
the required paths.

Subcase3.5: I, =2 20r2" 24+ 2. Letk =0if [, =
2" 2andk = 2if [, = 27242, By induction, thereexist
two digoint paths R; and R, such that (1) R, is a path
joiningu to v with [(Ry) = 2"~2 — k, (2) Rz isapath
joiningxtoy withl(Ry) = 2" 2+k—2,and (3) R1UR>

spans AQY ;. We can write R; as (u, R3, p,q, R4, V)
and write Rs as (x, Rs,s, t, Rg,y). By Lemma 3, there
exists ahamiltonian path S of AQL_, — {s™,t"} joining
p" toq”. Weset P, as (u, Rs,p,p",S,4",q, R4, V)
and P, as (x, Rs,s,s™,t", t, Rg,y). Obviously, P; and
P, aretherequired paths.

Figure 4: Subcase 3.3 and Subcase 3.4.

Case4: {x,v,y} C V(AQL ;).

Subcase4.1: dag, (x,y) < lo <271 —3 except that (1)
lo=2""1—4and(2) Iy =2if dag, (x,y) = 1 or 2 with
{u,v} # Nbdag, (x) N Nbdag, (y). See Figure 5(a)
for an illustration. Obvioudly, there exists a vertex p in
Nbdaqr  (v)—{x,y,u"}. By induction, thereexist two



digoint paths S; and S, such that (1) S; isapath joining
ptovwithi(S;) =1; — 2", (2) S, isapath joining x
toy with [(S2) = Iz, and (3) S1 U Sy spans AQL ;. By
Lemma 3, there exists a hamiltonian path R of AQY_,
joining u and p”*. We set P; as (u, R, p", p, S1,v) and
we set P, as S;. Obvioudy, P; and P, are the required
paths.

(@

(b)

Figure 5: Subcase 4.1 and Subcase 4.5.

Subcase 4.2: I, = 2 if dag,(x,y) = 1 or 2 with
{u,v} # Nbdag, (x) N Nbdag, (y). The proof is the
same to Subcase 1.2.

Subcase 4.3: I; = 2"~ — 4. Obviously, there exists a

vertex p in Nbdao1 (v) — {x,y}, and there exists a
vertex qin Nbdz1_ (P) — {x,y,V, u"l. By Lemma3,
there exists a hamiltonian path R of AQY _; joining u to
q", and there exists a hamiltonian path P, of AQL ; —
{v,p,q}joiningxtoy. Weset P, as (u, R,q",q, p, v).
Obviously, P; and P, are the required paths.

Subcase 4.4: 1, = 2"~1 — 2. Let v/ be an element in
{v" v¢} — {u}. By Lemma 3, there exists a hamilto-
nian path R of AQY_, joining u to v/, and there exists
a hamiltonian path P, of AQL_;, — {v} joiningx to y.
We set P, as (u, R,v’,v). Obviously, P, and P, arethe
required paths.

Subcase 45: I, = 2"~ ' — 1. See Figure 5(b) for
an illustration. Obviously, there exists a vertex p in
Nbdgg:r_ (v) — {x,y}. By induction, there exist two
digoint paths S; and S, such that (1) S; isapath joining
ptovwithi(S;) =1, (2) Sy isapathjoiningx toy with
[(S2) = 2771 — 3, and (3) S; U Sy spans AQ._,. Ob-
viously, we can write S, as (x, S3,r,s, S2,y) for some
vertex r and s such that u ¢ {r” s"}. Again by induc-
tion, there exist two digoint paths R, and R, such that
(1) Ry isapathjoining u to p” with [(R;) = 2"~ — 3,
(2) Ry isapathjoining r” to s with I(Ry) = 1, and (3)
Ry U Ry spans AQ° . We set P, as (u, Ry,p”,p, V)
and set P, as (x, 53,1, s" 5,52 y). Obviousy, P,
and P, arethe required paths.

Case 5! v € V(AQ,_,) and [{z,y} N V(AQ)_,)| =
1. Without loss of generdity, we assume that x €
V(AQS_,).

Subcase 5.1: [, = 1. The proof is the same to Subcase
2.1

Subcase 5.2: I = 2 if dag, (x,y) = 1 or 2 with
{u,v} # Nbdag, (x) N Nbdag, (y). The proof is the
sameto Subcase 1.2.

Subcase 5.3 I, = 3.



Suppose that d 4, (x,y) = 1. Obviously, there exists
avertex p in Nbd g0 (x) — {u,v"}. Weset P, as
(x,p,p",y). By Lemma 3, there exists a hamiltonian
path P, of AQ,, — V(P;) joining u to v. Obviously, P;
and P, arethe required paths.

Supposethat daq, (x,y) = 2. Assumethat {u,v} =
Nbdag, (x) N Nbdag, (y). Thus, we have either v = x"
or v = x°. Moreover,u = x%, andy = v for some
aefi|2<i<n}U{ix|2<i<n-—1}. Weset
Py as (x, x" (x"*)*, (x")¥) = y) inthe case of v =
x". Otherwise, we set P, as (x,x", (x")*, ((x"*)*) =
y). By Lemma 3, there exists a hamiltonian path P;
of AQ, — V(P.) joining u to v. Obviously, P; and
P, are the required paths. Now, assume that {u,v} #
Nbdag, (x) N Nbdag, (y). By Lemma 1, there exists
avertex p in (Nbdag, (x) N Nbdag, (y)) — {u,v}.
Without loss of generality, we may assume that p is
in AQY_,. By Lemma 1, there exists a vertex q in
(Nbdago  (P) N Nbdygo  (x)) — {u}. By Lemma3,
there exists ahamiltonian path P; of AQ.,, — {x,q,p,y}
joiningutov. Weset P, as (x,q,p,y). Obviously, P,
and P, are the required paths.

Supposethat d ¢, (x,y) = 3. By Lemmad4, there are
two shortest paths R; and R5 of AQ,, joining x toy such
that R, can be written as (x,r1,r2,y) with {ry,r2} C
V(AQY_,) and Rs can be written as (x, s1,s2,y) with
{s1,82} C V(AQL_,). Suppose that u # ry or
v # s3. Without loss of generality, we assume that
u # rp. By Corollary 5, there exists a vertex t €
Nbdgo  (x) N Nbdygo  (r2) — {u}. Weset P as
(x,t,r2,y). By Lemma 3, there exists a hamiltonian
path P, of AQ, — V(P-) joining u to v. Obviously,
P, and P, are the required paths. Thus, we consider
u = By Corollary 5, there exists a
vertex p in Nbdaqo  (x) N Nbdago  (u). Obviously,

ro and v = sj.

dag, (p,y) = 2. By Lemma 4, there exists a vertex
q in V(AQL_,) N Nbdag, (p) N Nbdag, (y). Since
daq,(a,y) = landdaq,(v,y) = 2, q # v. We set
P, as (x,p,q,y). By Lemma 3, there exists a hamilto-
nian path P; of AQ,, — V(P,) joining u to v. Obviously,
P, and P, arethe required paths.

Subcase5.4: 4 <y < 2" ! — 1 withdag, (x,y) = 1.

Suppose that Io = 4. See Figure 6(a) for an
illustration.  Obvioudly, there exists a vertex p in
Nbdago (%) — {u,v"}. By Lemma 1, there exists
avertex g in (Nbdago  (x) N Nbdago  (p)) — {u}.
By Lemma 3, there exists a hamiltonian path P; of
AQ, — {x,y,p,p",q} joining uto v. We set P, as
(x,q,p,p",y). Obviously, P, and P, are the required
paths.

Suppose that 5 < [y < 277! — 1 except that [, =
27~ — 92, See Figure 6(b) for an illustration. Obviously,
thereexist avertex p in Nbd 40 (x) —{u, v",y"} and
avertexs in Nbd gqo _ (u) — {x,p,v",y"}. By induc-
tion, there exist two disjoint paths R; and R such that (1)
Ry isapathjoiningutos withi(R;) =271 —2—15,(2)
Ry isapathjoining p to x with [(R2) = l» — 2, and (3)
R1URy spans AQY _,. By Lemmag3, there existsahamil-
tonian path S of AQL_; — {y,p"} joining s" to v. We
set P, as (u, Ry,s,s", S, v) and P, as (x, Rz, p, p", y).
Obviously, P; and P, are the required paths.

Suppose that [, = 2"~! — 2. See Figure 6(c) for an
illustration. Let s and p be two verticesin V(AQY ;) —
{u,x,v" y"}. By induction, there exist two digoint
paths R; and R» suchthat (1) R, isapathjoiningutos
with [(R;) = 2"72, (2) R isapathjoining p to x with
I(Rg) =272 —2,(3) R1URy spans AQY _,. Similarly,
there exist two digoint paths S; and S5 such that (1) Sy
isapath joining s" to v with [(S;) = 2772 — 1, (2) S»
isapath joining p" to y with [(S2) = 272 — 1, and (3)
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Figure 6: Subcase 5.4.

S1 U Sy spans AQL . Weset Py as (u, Ry,s,s", S1,v)
and P, as (x, Ry, p, p", S2,y). Obviously, P, and P, are
the required paths.

Subcase55: 4 <, < 2! — 1 exceptly, =271 -3
withdag, (x,y) > 2.

Suppose that dag, (x,y) = 2 with {u,v} =
Nbdag, (x) N Nbdag, (y). See Figure 7(a) for anillus-
tration. Thus, we have either v = x" or v = x°¢. More-
over,u =x%andy = (x")* forsomea € {i |2 <i <
n} U {ix |2 <i<n-—1}. Obvioudly, thereexistsaver-
tex tin Nbdygr  (v) — {x", y,x¢,u"}. By induction,
there exist two digoint paths R, and R5 such that (1) R
isapathjoiningt tov with/(R1) =271 —1—15,(2) Rz
isapath joining x¢ to y with [(R2) = I — 1 in the case
of v = x"; otherwise R, is a path joining x" to y with
[(Rg) = lz—1,and (3) R1URs spans AQ}, _,. By Lemma
3, there exists ahamiltonian path S of AQY _; — {x} join-
ing t? tou. We set P, as (u, S,t" t, Ry,v) and P, as
(x,x°, Ry, y) inthecaseof v = x"; otherwise, we set P,
as (x,x", Ry, y). Obviously, P, and P, are the required
paths.

Suppose that daq, (x,y) = 2 with {u,v} #
Nbdag, (x) N Nbdag, (y). See Figure 7(b) for anillus-
tration. Then, there exists a vertex p in (Nbd aq,, (x) N
Nbdag, (y)) — {u,v}. Without loss of generality, we
may assumethat p € V(AQL_,). Obviously, there exists
avertex t in Nbd 51 (v) — {y, p,u”,x"}. By induc-
tion, there exist two disjoint paths R; and R such that (1)
Ry isapathjoining t to v with [(R;) = 2771 — 1 — [y,
(2) Ry isapathjoiningp toy withl(Rs) = Io — 1, and
(3) Ry U Ry spans AQL_,. By Lemma 3, there exists
a hamiltonian path S of AQY | — {x} joining t" to u.
We set P as (u, S, t" t, Ry,v) and P, as (x, p, Ra,y).
Obviously, P; and P, are the required paths.

Suppose that dag,(x,y) = k > 3. By

10



Lemma 4, there are two shortest paths S; and
Se of AQ, joining x to y such that S; can

be written as (x = ro,r1,r2,...,re—1,y) Wwith
L . (V(S1) — {y}) € V(AQY_,) and S, can be writ-
"‘ ten as (x,s1,S2,...,5k—1,y) With (V(S2) — {x}) C

\ V(AQL_,). Supposethat u # ry ;. See Figure 7(c)
for anillustration. We set p = ry_1. Again, there exists

@ avertexs in Nbd gqo_ (u) — {x,p,y",v"}. By induc-
tion, there exist two digjoint paths R, and R- such that (1)
Ry isapathjoiningu tos with [(R;) = 2771 — 1 — [y,
(2) Ry isapath joining p to x with(R2) = I2 — 1, and

' (3) Ry U Ry spans AQY _,. By Lemma 3, there exists
a hamiltonian path S of AQL_; — {y} joining s” to v.
We set P as (u, Ry,s,s",S,v) and P, as (x, R, p,y).
Obviously, P, and P, are the required paths.

Now we assumethat ry_; = uands; = v. SeeFig-
ure 7(d) for an illustration. Since d 4¢,, (rk—2,y) = 2,
by Lemma 4, there exists avertex p € Nbd ag,, (rk—2)
in V(AQL_,) suchthat dag, (p,y) = 1. Suppose that
lo = 4with dag, (x,y) = 3. Thus, (x,r1,p,y) isa

shortest path joining x and y. By Lemma 1, there ex-
istsavertexq € Nbdyq1_ (P) N Nbdygr (y) —{v}.
By Lemma 3, there exists a hamiltonian path P; of
AQ, — {x,r1,p,q,y} joining u to v. We set P, as
(x,r1,p,q,y). Obviousdly, P; and P, are the required
paths. Supposethat I = 4 with dag, (x,y) = 4. Thus,
P, = (x,r1,r2,p,y) is a shortest path joining x and

y. By Lemma 3, there exists a hamiltonian path P; of
AQ,—{x,r1,r2,p,y}joiningutov. Obviously, P; and
P, are the required paths. Supposethat 5 < [, < 272
with daq, (x,y) > 3. Obvioudly, there exists a vertex
sin Nbdygo  (u) — {x, ri_2,y",v"}. By induction,
there exist two digoint paths R, and R, such that (1) R,
C) is a path joining u to s with I(R1) = 2"~! — Iy, (2) Ro
isapath joining ri_o to x with [(Ry) = lo — 2, and (3)

Figure 7: Subcase 5.5.
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R1URs spans AQY . By Lemma3, thereexistsahamil-
tonian path S of AQ. , — {p,y} joinings” tov. We set
Py as (u, Ry,s,s". S, v) and P, as (x, Ry, rx_2,P,y)-
Obvioudly, P, and P, are the required paths. Suppose
that 272 +1 < Iy < 2"71 — 1 except 2"~ — 3 with
dag, (x,y) > 3. Obviously, there exists a vertex s in
NbdAQ‘,{,l(u) —{x,ri_2,y",v"}. By induction, there
exist two digjoint paths Ry and R, such that (1) R, isa
path joining u to s with [(R;) = 2" 2 + 1, (2) Ry isa
path joining ry_ o to x with [(Ry) = 272 — 3, and (3)
Ry U Ry spans AQY ;. Again by induction, there exist
two digoint paths S; and S such that (1) S is a path
joinings™ tov withi(S1) = 2"t —1,+2""2—4,(2) S
isapathjoiningp toy with1(Ss) = I, —2""2+2, and (3)
S1 U Sy spans AQL . Weset Py as (u, Ry,s,s", S1,v)
and P, as (x, Ry, rk—2, P, S2,y). Obviously, P, and P,
are the required paths.
Subcase 5.6: I, = 2" ! —3oril, = 27! — 1 with
dag, (x,y) > 2. Lett =0if lh, =21 —3andt =1
if I, = 27~1 — 1. Obviousdly, there exist two vertices s
and p in AQ?_; — {u,x,v", y"}. By induction, there
exist two disjoint paths R, and R, such that (1) R; isa
path joining u to s with [(R1) = 272 — ¢, (2) Ry is
a path joining p to x with [(Ry) = 2772 +¢ — 2, and
(3) R1 U Ry spans AQY_,. Similarly, there exist two
digoint paths S; and S, such that (1) S; isapath joining
s™ to v with [(S;) = 2772 — ¢, (2) S» is a path joining
p" toy with [(S;) = 2772 + ¢ — 2, and (3) S1 U S,
spans AQL_,. Weset P, as (u, Ry,s,s",S1,v) and P,
as (x, Re,p,p"”, S2,y). Obviously, P, and P, are the
required paths.

Thus, Theorem 7 is proved. O

4 Concluding remarks

Now, we make some remarksto illustrate that somein-

teresting properties of augmented cubes are consequences
of Theorem 7.

Remark 1. The hamiltonian connected property of aug-
mented cubes, proved in [8], states that there exists a
hamiltonian path of AQ,, joining any two different ver-
ticesu and y. Now, we prove that AQ,, is hamiltonian
connected by Theorem 7. Obviously, AQ ,, is hamiltonian
connected for n = 1. Sincen > 2, we can choose a pair
of adjacent verticesv andx suchthat {v, x}N{u,y} = 0.
By Theorem 7, there are two digjoint paths P; and P»
such that (1) P, isapath joining u to v, (2) P, isapath
joining x to y, and (3) P; U P, spans AQ,,. Obviously,
(u, P1,v,x, Py, y) formsahamiltonian path joining u to
y. Thus, AQ,, is hamiltonian connected.

Remark 2. The panconnected property of AQ ,,, proved
in [13], stated that between any two different vertices x
and y of AQ,, there existsa path P;(x,y) of length [ for
any dag, (x,y) <1<2"—1. Now, we provethat AQ,,
is panconnected by Theorem 7. Obviously, AQ ,, is pan-
connected for n = 1, 2. Now, we consider that n > 3.

Suppose that [ = 2™ — 1. By Remark 1, AQ., is
hamiltonian connected. Obviously, the hamiltonian path
of AQ,, joiningx andy isof length 2™ — 1. Suppose that
l = 2" —2. Letubeavertex in Nbdag, (y) — {x}.
By Lemma 1, there exists a vertex v in (Nbd 4, (1) N
Nbdag, (y)) — {x}. By Theorem 7, there exist two dis-
joint paths P; and P, such that (1) P; is a path joining
x tou with [(P) = 2™ — 3, (2) P, is apath joining y
to v with [(P») = 1, and (3) P1 U P, spans AQ,,. Ob-
viously, (x, P1,u,y) isapath of length 2™ — 2 joining x
toy. Supposethat I = 2™ — 3. We can find two adja
cent verticesu and v such that {u, v} N {x,y} = 0. By
Theorem 7, there exist two digjoint paths P, and P, such
that (1) P, isapath joining x toy with {(P;) = 2™ — 3,
(2) Py isapath joining u to v with [(P2) = 1, and (3)
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P, U P, spans AQ,,. Obvioudly, P, is a path of length
2" — 3 joining x to y. Supposethat [ < 2™ — 4. By
Lemma 2, there exist two vertices u and v such that
dag, (u,v) = 2,{x,y} # Nbdag, (u) N Nbdag, (v),
and {u, v} # Nbdagq, (x) N Nbdag, (y). By Theorem
7, there exist two digjoint paths P, and P, such that (1)
Py isapathjoiningx toy withi(Py) = [, (2) P> isapath
joiningutov withl(Py) = 2" —2 —1[,and (3) P U P>
spans AQ,,. Obvioudly, P; isapath of length [ joining x
toy. Thus, AQ,, is panconnected.

Remark 3. The edge-pancyclic property property of
AQ),, stated that for any edge e = (x,y) and for any
3 < I < 27, there exists a cycle of length [ containing
eif n > 2. We provethat AQ,, isedge-pancyclicby The-
orem 7. Obviously, AQ,, is edge-pancyclic for n = 2.
Thus, we consider that n > 3.

Suppose that [ = 3. By Lemma 1, there exists u €
Nbd g, (x)NNbdag, (y). Obviously, (x,y, u,x) forms
a cycle of length three containing e. Now, we consider
that | = 2" and [ = 2" — 1. By Lemma 1, there exists
v € (Nbdag, (u)NNbdag, (y)) — {x}. By Theorem 7,
there exist two digoint paths P; and P, suchthat (1) P; is
apathjoiningx touwith[(P;) = 2™ — 3, (2) Py isapath
joiningvtoy withl(P,) = 1,and (3) PUP; spans AQ,.
Obvioudly, (x, P1,u,v,y,x) forms acycle of length 2"
containing e and (x, P1,u,y,x) forms a cycle of length
2™ — 1 containing e. Suppose! = 2™ — 2. By Theorem
7, there exist two disjoint paths )1 and Q5 such that (1)
@1 isapahjoiningx toy withi(Q1) = 2™ — 3, (2) Q2
is a path joining u to v with [(Q2) = 1, and (3) @1 U
Q2 spans AQ,,. Obviously, (x,Q1,y,x) forms a cycle
of length 2 — 2 containing e. Suppose that 4 < | <
2™ — 3. By Lemma 2, there exists two vertices p and q of
AQ, suchthat dag, (p,q) =2, {x,y} # Nbdag, (P)N
Nbdag, (q), and {p,q} # Nbdaq, (x) N Nbdag, ()

By Theorem 7, there exist two disjoint paths R; and R»
suchthat (1) Ry isapathjoiningx toy withi(R;) = -1,
(2) Ry isapathjoiningu to v with[(R2) = 2" — 1 — 1,
and (3) Ry U Ry spans AQ,,. Obviously, (x, R1,y,X)
formsacycle of length [ containing e.
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