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Abstract

A k-container Cy(u,v) of a graph G is a set of k
internally vertex-disjoint paths joining vertices u and
v. It becomes a k*-container if every vertex of G is
passed by a certain path of Ci(u,v). A graph G is
said to be k*-connected if there exists a k*-container
between any two vertices of G. A graph G with
connectivity k is super spanning connected if it is
1*-connected for every 1 < i < k. A bipartite graph
G is k*-laceable if there exists a k*-container between
any two vertices v and v from different partite sets
of G. A bipartite graph G with connectivity x is
super spanning laceable if it is i*-laceable for all
1 < i < k. In this paper, we show the n-dimensional
binary wrapped butterfly graph is super spanning
connected (resp. super spanning laceable) if n is odd
(resp. even).

Keywords:  Container; Butterfly graph; Hamil-
tonian connected; Hamiltonian laceable; Super
spanning connected; Super spanning laceable

1 Introduction

A multiprocessor/communication interconnection
network is usually represented by a graph, in which
the vertices correspond to processors and the edges
correspond to connections or communication links.
Hence, we use the terms, graphs and networks, inter-
changeably. Among various kinds of network topolo-
gies, the wrapped butterfly network is very suitable
for VLSI implementation and parallel computing and
thus its topological properties have been widely dis-
cussed in [1,4-7,11,12,14]. For example, embedding
of rings, linear arrays, and binary trees into a butter-
fly network was addressed in literature [5,6,12,14].
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Throughout this paper, we concentrate on loop-
less undirected graphs. For the graph defi-
nitions and notations we follow the ones de-
fined in [2]. A graph G consists of a finite
nonempty set V(G) and a subset E(G) of {(u,v) |
(u,v) is an unordered pair of V(G)}. The set V(G)
is called the vertex set of G and E(G) is called the
edge set. Two vertices u and v of G are adjacent
if (u,v) € E(G). A graph H is a subgraph of G
if V(H) C V(G) and E(H) C E(G). Let S be a
nonempty subset of V(G). The subgraph induced by
S is the subgraph of G with its vertex set S and with
its edge set which consists of those edges joining any
two vertices in S. We use G — S to denote the sub-
graph of G induced by V(G) — S. Analogously, the
subgraph generated by a nonempty subset F' C E(G)
is the subgraph of G with its edge set F' and with its
vertex set consisting of those vertices of G incident
with at least one edge of F. We use G — F' to denote
the subgraph of G with vertex set V(G) and edge set
E(G)-F.

A path P of length k joining vertex x to vertex
y in a graph G is a sequence of distinct vertices
(v1,v2,...,vk+1) such that © = vy, y = vg41, and
(vi,vi+1) € E(G) for every 1 < i < k. For con-
venience, we write P as (v1,...,0;,Q,0j,...,Vk41)
where @ = (v;,vi41,...,v;j). Note that we allow Q
to be a path of length zero. For ¢ > 1, the i-th vertex
of P is denoted by P(i); i.e., P(i) = v;. Moreover,
we use P~! to denote the path (vpi1,vk,...,v1).
Let V(P) = {v1,v2,...,0541} and I(P) = V(P) —
{v1,vk41}. A set of k paths P, ..., Py are internally
vertex-disjoint (or disjoint for short) if I(P;)NI(P;) =
¢ for any i # j. A cycle is a path with at least three
vertices such that the last vertex is adjacent to the
first one. For clarity, a cycle of length k is represented
by (v1,va,..., vk, v1). A path of a graph G is a hamil-
tonian path if it spans G. A graph G is hamiltonian
connected if there exists a hamiltonian path joining
any two distinct vertices of G. Similarly, a hamilto-
nian cycle of a graph G is a cycle that traverses every



vertex of G exactly once. A graph is hamiltonian if
it has a hamiltonian cycle.

The degree of a vertex u in G is the number of
edges incident to u. A graph G is k-regular if all its
vertices have the same degree k. The connectivity of
a graph G, denoted by x(G), is the minimum num-
ber of vertices whose removal leaves the remaining
graph disconnected or trivial. A k-container Cy(u,v)
of G between vertices u and v is a set of k internally
vertex-disjoint paths joining v and v. Suppose that
k(G) = k. Tt follows from Menger’s theorem [9] that
there exists a k-container of G between any two dis-
tinct vertices. In this paper, a k-container C(u,v) is
a k*-containerif it contains all vertices of G. A graph
G is k*-connected if there exists a k*-container be-
tween any two distinct vertices. In particular, G is 1*-
connected if and only if it is hamiltonian-connected.
Moreover, GG is 2*-connected if it is hamiltonian. The
spanning connectivity of a graph G, k*(G), is defined
as the largest integer m such that G is i*-connected
for all 1 < ¢ < m. A graph G is super spanning
connected if K*(G) = k(G). Recently, a number of
networks had been shown to be super spanning con-
nected [8,13].

A graph G is bipartite if its vertex set can be parti-
tioned into two disjoint subsets V) and V; such that
every edge joins a vertex of Vj and a vertex of V.
A bipartite graph is k*-laceable if there exists a k*-
container between any two vertices from different par-
tite sets. Note that a 1*-laceable graph is also known
as a hamiltonian-laceable graph [10] and a bipartite
graph is 2*-laceable if and only if it is hamiltonian.
Similarly, the spanning laceability of a hamiltonian
laceable graph G, £} (G), is the largest integer m such
that G is i*-laceable for every 1 < i < m. A bipartite
graph G is super spanning laceable if k% (G) = k(G).
Likewise, a number of networks had been shown to
be super spanning laceable [3, 8].

Let Z,, = {0,1,...,n—1} denote the set of integers
modulo n. The n-dimensional binary wrapped butter-
fly network (or butterfly network for short) BF(n) is
a graph with Z, x Zj as vertex set. Each vertex
is labeled by a two-tuple (¢,aq...a,—1) with a level
{ € Z, and an n-digit binary string ag...ap_1 €
Zy. A level-£ vertex ({,ag...ap...an—1) is adja-
cent to two vertices, (£ + 1)modan,Qp...a¢...0n_1)
and (({ — Dmodn,ag...ap—1...an_1), by straight
edges, and is adjacent to another two vertices,
((€ + Dmodn,ag...ap—18pap41...an—1) and ((¢ —
1)mod ny@Q -« . Ag—2G¢—1a¢ ... An_1), by cross edges.
More formally, the edges of BF(n) can be defined
in terms of four generators g, ¢~ !, f, and f~! as
follows:

g({lyao...an-1)) = {({+ Dmod n,a0 ...an—1),

g ' ((lyao .. .an—1)) = (£ = D)mod n, a0 . ..an—1),
f(<€, ag...ap.. .an,1>) = <(£+ l)mod ny@Q ... Qp .. .an,1),

and

f71(<e, apg...ap—1 ..

= <(1€ — 1)m0d n,@Q ...0p—1 .. .an_1>

. an71>

where @y = ay + 1 (mod 2). Throughout this paper,
a level-¢ edge of BF(n) is an edge that joins a level-¢
vertex and a level-(¢ + 1)moa » vertex. To avoid the
degenerate case, we assume n > 3 throughout this
paper. So BF(n) is 4-regular. Moreover, BF(n) is
bipartite if and only if n is even. Figure 1(a) depicts
the structure of BF'(3) and Figure 1(b) is the iso-
morphic structure of BF(3) with level-0 replication
for easy visualization.

According to [14], BF(n) is 1*-connected and 2*-
connected (resp. 1*-laceable and 2*-laceable) if n is
odd (resp. even). In this paper, we show that BF(n)
is 3*-connected and 4*-connected (resp. 3*-laceable
and 4*-laceable) if n is odd (resp. even). The rest
of the paper is organized as follows. Section 2 in-
troduces the nearly recursive construction of BF(n),
which was proposed by Wong [14]. Section 3 provides
the useful lemmas to prove the main results. Since
the proof of the main theorem is rather long, it is
broken into several lemmas in Section 4 and Section
5. For the sake of clarity, the detailed proofs of sev-
eral lemmas are described in Appendix. Finally, the
future work is discussed in Section 6.

2 Nearly recursive construc-
tion of BF(n)

Let n > 3. For any ¢ € Z, and i € Zy, we use
BF}(n) to denote the subgraph of BF(n) induced
by {(h,a0...an—1) | h € Zy,ap = i}. Obviously,
BF} (n) is isomorphic to BF] (n) for any i,j € Zy
and (1,0o € Z,. Moreover, {BF}(n) | i € Zs}
forms a partition of BF'(n). With such observation,
Wong [14] proposed a stretching operation to obtain
BF}(n) from BF(n—1). More precisely, the stretch-
ing operation can be described as follows. Assume
that ¢ € Z, and i € Zy. Let &, be the set of all
subgraphs of BF(n) and let G € 3. We define the
following subsets of V(BF(n+1)) and E(BF(n+1)):

Vi = {vh|0<h<lu,eV(Q)},
Vo = {vip1 [L<h<n—10 € V(G)},
Vs = {v} | v is incident with
a level-(£ — 1)moa » edge in G},
Vi = {vis1 | e is incident with
a level-£ edge in G},
Ei = {(vh,vh41) |0 <h <L (v, unta) € E(G)},
Er = {(Why1,0hs2) [ £ <h<n—1, (vn,untr) € BE(G)},
and
Es = {(vi,vis1) | ve is incident with at least one

level-(¢ —
level-¢ edge in G}

1)mod » edge and at least one
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Figure 1: (a) The structure of BF(3); (b) BF(3) with level-0 replicated to ease visualization.

where
vy, (hyag...ap—1a¢...an-1),
Uup = <h, bo . bg_lbg . .bn_1>,
vi = (haq...ap_yiag...a,_1), and
ul, = (h,by...bg_1ibg...by_1).
Then we define the function 7} : U,>3S» —

U,,>4 S» by assigning 7(G) as the graph with the
vertex set V3UVoUV3UV, and the edge set FyUFESUFES.
One may find that v} is well-defined and one-to-one.
Furthermore, v;(G) € Sp,11 if G € S, In particular,
Yi(BF(n)) = BF}(n+ 1). Moreover, v;(P) is a path
in BF(n+ 1) if P is a path in BF(n).

In fact, BF(n) can be further partitioned. As-
sume that 1 < m < n, i1,...,%, € Zs, and
ly,....4,m € Z, such that f; < < L.
We use BF,!";"(n) to denote the subgraph of
BF(n) induced by {(h,aq...an_1) | h € L, ap, =
ij for 1 < j <m}. So, {BF/""ym(n) | iy,... im €
Zoyly, ... by € Zp, by < ... < Ly} forms a par-
tition of BF(n). To avoid the complicated case
caused by modular arithmetic, we restrict our atten-
tiononl <m<n-1,0< /4 < ... < ¥,, and
f; <n—m+j—1foreach 1l < j < m. Then the
following lemmas can be easily derived.

Lemma 1. Suppose that i1,...,%m € Zo and
ly,.... by are integers such that 0 < {1 < ... < {p,
and {;j <n—m-+j—1 for each 1 < j<m. Then

BE,! " (n)

Yo 0y (BF,2(3))

=9 Vr o 02 (BEF(3))
fyZZ 0...0 ’)/2 (BF(n—m))

fm=n-—1,
fm=n-—2,
otherwise.

In the next lemma, we let

v (lyag...an-1),
vzj = (l,ag...ap—1ijag...an—1),
véi = ((+1,a0...ap—1ijag...an_1), and
vé{ﬂ = ((+2,a0...ap—1ijap...an_1).

Lemma 2. Letn > 3. Assume that 0 < ¢ <n —1,
I' € $,, and G is a connected spanning subgraph of
. For anyi,j € Za, let

Fy = {v|w is not incident with any
level-(£ — 1)moan edge in G},
Fy = {v]wv is not incident with any
level-¢ edge in G},
?O = U {Uéjvvz-l}a
veFy
Fo= v vida
veEF]
Xo = JA@ v
veEFo
X = et
veEF
MO = U {(’U;]7 ’Uzil)} B and
’UGG*(FQUFl)
M, = U {(Uﬁpvﬂz)}

vEG—(FoUFY)

Then FoNFy = ¢ and‘foﬁfl =¢. Thus, FoUF, =
V(41 07%(D) = V(77,4 07(G)) can be represented
as Uzh;l{uk,g(uk) | up € V(fyz_H o%ﬁ(I‘))} with some
m > 1 such that {uy | 1 <k <m}n{glup) |1 <k <
m} = ¢. Moreover, Mo UM, C E(y,, ov,(G)) and

XoU X1 = UL {(ur, g(ur)) | ux € V(7741 0 7))}
s a set of edges with no shared endpoints.

Lemma 3. Assume n > 3 and k > 1. Suppose
that {P1,..., Py} is a k-container of BF(n) between
two vertices x and y with the following conditions:
(i) V(BF(n)) = Uiy V(P) = UL {ui, g(uwi) | w; €
V(BF(n))} with some m > 1 such that {u; | 1 <
i < min{gly) | 1 < i < m} = ¢, and (ii)
U {(f (wi), g7 o f(us)) S Uiy E(P;). Then there
exists a k*-container of BF(n) between x and y.

Proof. Let A = U, {(w.g9(w))} U U,
{(wi, f(wi))} U U {(g(wi), [~ o g(u;))} and
B = U {(f(w),g7' o f(u;))}. Obviously, AN



(U B) = . Then (UK, B(R)) L 4) - B

forms a k*-container of BF(n) between z and y. O

Let G be a subgraph of BF(n) and let C be a cycle
of G. Then C'is an ¢-scheduled cycle with respect to G
if every level-£ vertex of G is incident with a level-(£—
1)moa » edge and a level-¢ edge in C. Furthermore, C
is a totally scheduled cycle of G if it is an ¢-scheduled
cycle of G for all ¢ € Z,. Obviously, ~vi(C) with
i € {0,1} is a totally scheduled cycle of v;(G) if C is
a totally scheduled cycle of G.

Theorem 1. [14] Assume n > 3. Then BF(n) is
1*-connected if n is odd, and BF(n) is 1*-laceable
otherwise.

Theorem 2. [1}] Assume n > 3. Every BF(n) has
a totally scheduled hamiltonian cycle. Thus, BF(n)
is 2*-connected

By stretching operation, we have the following
lemma and corollary.

Lemma 4. Let n > 3. Assume that 0 < £ <n—2
and i,j € Zy. Then there exists a totally scheduled
hamiltonian cycle of BF;, | (n).

Corollary 1. Assume thatn >4 and i,j,p,q € Zs.
Then there exists a totally scheduled hamiltonian cy-
cle ofBFg’{ 5%(n), including all straight edges of level

0, level 1, level 2, and level 3 in BFg{g’é(n)

3 Basic properties of BF(n)

A path P of BF(n) is £-scheduled if every level-£ ver-
tex of I(P) is incident with a level-(¢ — 1)moa » edge
and a level-£ edge on P. A path P of BF(n) is weakly
£-scheduled if at least one level-¢ vertex of I(P) is in-
cident with a level-(£ — 1)moa » edge and a level-¢ edge
on P.

Lemma 5. Let n > 3. Assume i,j € Zs and
0 < ¢ < n-—3. Suppose that s is any level-(£+ 1) ver-
tex of BF, £+1( n) and d is any level-(£ + 2) vertex of
BFg’gﬂ(n). When n = 3, there exists a 0-scheduled
hamiltonian path P of BFS{ (3) joining s to d with
P3(2) = g7'(s). When n > 4, there exists an (-
scheduled hamiltonian path P, of BFZ é-s—l( n) joining

s to d such that P, is weakly (¢ + 2)-scheduled with
P,(2) = g71(s). In particular, P,(n x 2772 —2) =

g 2(d) and P,(n x 22 —1) = g~ 1(d) forn > 3 if
d#g(s).
Proof. Omitted. O

In terms of the symmetry of BF(n), we have the
following corollary.

Corollary 2. Let n > 3. Assume i,j € Zo and
0 < ¢ < n-—3. Suppose that s is any level-(¢ + 1)
vertex of BFHH( n) and d is any level-{ vertex of

BFZ;_H(n). When n = 3, there ezists a 2-scheduled

hamiltonian path P3 of BFPz “_1( n) joining s to d with
H(2) = g(s). When n > 4, there exists an (£ + 2)-
scheduled hamiltonian path P, of BFZz £+1( n) joining
s to d such that P, is weakly (-scheduled with P, (2) =
g(s). In particular, P,(n x 2"~2 —2) = ¢*(d) and
Py(nx 2772 —1) = g(d) forn >3 if d # g~ 1(s).

Lemma 6. Assume that n > 3. For any x € Z3,
let F, = {(h,x) | h € Z,}. Then there is a totally
scheduled hamiltonian cycle in BF(n) — Fy.

Proof. Without loss of generality, we assume z =
0™. Then we prove this lemma by induction on n.
The induction basis is a totally scheduled hamiltonian
cycle of BF(3) —{(0,000), (1,000), (2,000)}, listed in
Table 1.

Now we suppose that the statement holds for
BF(n — 1) with n > 4 and partition BF(n) into
{BF{(n),BF}(n)}. Thus, F, C V(BF{(n)). Let
F! = {(h,0" Y | h € Z,,_1}. By induction hypoth-
esis, there exists a totally scheduled hamiltonian cy-
cle Cy of BF(n — 1) — F.. By Theorem 2, there
exists a totally scheduled cycle Cy of BF(n — 1).
Since BF{(n) — F, = 73(BF(n — 1) — F.) and
BFg(n) = v5(BF(n — 1)), then 7§(Co) and ~4(C1)
are totally scheduled hamiltonian cycles of BF{)(n) —
F, and BF}(n), respectively. Let C be the sub-
graph of BF(n) generated by E(7J(Co)) U E(v4(Ch))
O { (0,007 1), (1,1m), ({0, 17, (1,017 1))} — {
((0,01m=1),(1,01™71)), ((0,1™),(1,1™))}. Then C is
a totally scheduled hamiltonian cycle of BF(n) —
F,. O

Lemma 7. Assume i,j € Zo, n is an odd in-
teger greater than or equal to 3, and x € Zg_Q.
Let up, = (h,ijx) for any h € Z,. Then the
following statements are true: (i) There exists a
hamiltonian cycle in BFy1(n) — {u1}; (i) there ex-
1sts a 0-scheduled hamiltonian cycle in BFS{(n) -
{uo, w1, un—1}; (iii) there exists a 0-scheduled hamil-
tonian cycle in BFy(n) — {uo, u1, uz}.

Proof. By Lemma 6, there is a totally scheduled
hamiltonian cycle Cy in BF(n) — {u, | h € Z,}.
With regard to each statement, we construct a cycle
as follows: N
Let C; be the subgraph of BFy7(n)
ated by (E(Cy) U {(uat; U2t41)moan) | 1
1513 U {(uae, fluze)) | 1 < & <
{ (w2t 1)moa > f T HU@E41)moa ) | 1 < 8 < |5
{(f(u2e), 7 (W@t 1)moa n)) [ 1 < ¢ < 5]} Th
is a hamiltonian cycle in BFO’ (n) — {ul}
Let Cy be the subgraph of BFS (n) generated

gener-
<t <

by (E(Cf) U {(uzt,uzen) | 1 <t < [5] —
1} U {(uat, fluze)) | 1 < ¢t < [5] — 1} U
{(ugesr, f7Mugerr)) | 1 <t < 5] - 1)) —

—

{(fuae), [ (u2e1)) | 1 <t < [5] — 1} Then Co
forms a 0-scheduled hamiltonian cycle in BFO’{(n) -
{ug, w1, Un—1}. N

Let C3 be the subgraph of BF{(n) generated
by (E(Cf) U {(ugs—1,u2e) | 2 < & < [3]} U



Table 1: A totally scheduled hamiltonian cycle of BF'(3) —

{(0,000), (1,000), (2,000)} as induction basis.

({0,100), (1, 100), (2,110}, (0, 111), (1,011), (2,011), (0, 011), (1,111}, (2, 101), (0, 101), (1,001},
(2,001}, (0,001), (1, 101}, (2, 111}, (0, 110), (1,010), (2,010}, (0,010, (1,110, (2, 100), (0, 100))

{(uat—1, fuze—1)) |2 <t < [ 5]} U {(uar, [ (uat)) |
2 <t < 3]} — {(fluae—1), [ (u2r)) | 2 <t <
5]} Then Cs is a 0-scheduled hamiltonian cycle in

BF&’{(TL) — {uo,ul,u2}. O

Lemma 8. Assume that n is an odd integer greater
than or equal to 3. Let s and d be two distinct level-0
vertices of BF(n). Then there exists a hamiltonian
path of BF(n) joining s to d such that s is incident
with a level-(n—1) edge and d is incident with a level-
0 edge.

Proof. Without loss of generality, we assume s =
(0,0™) and d = (0,4ijx) with some i,j € Zo and
x € Z5?. Then we construct the desired hamilto-
nian path of BF(n) by induction on n. The induction
bases depend upon the hamiltonian paths of BF(3)
joining (0,000) to the other level-0 vertices, enumer-
ated in Table 2. Then we suppose that the statement
holds for BF'(n —2) with n > 5 and partition BF(n)
into { BF§{'(n) | p,q € Zs}.

Case 1: Suppose that @ = 0" 2. Let t =
(0,y) be a level-0 vertex of BF(n — 2) other than
s’ = (0,0""2). By induction hypothesis, there
is a hamiltonian path @ of BF(n — 2) joining s’
to t such that s’ is incident with a level-(n — 3)
edge and t is incident with a level-0 edge. Fur-
thermore, let u}? = (h,pq0"~2) and ¥ = (h,pqy)
for any p,q € Zs and h € {0,1,2}. Since
BF;{(n) = 1 07(BF(n - 2)), 7 0 7§(Q) is a path
of BF&’lo(n) joining s = ud® to t3°. By Corollary
2, there is a 2-scheduled hamiltonian path HY =
<2521],Pw,u2 Jul? ully of BFO’{( ) joining Y to wug.
By Lemma 4, there is a totally scheduled hamiltonian
Cyde crl = <tgqvt11)qvt12)q7Danugqvu€q7u3q3RPQ’t€q>
of BF{(n) for pq € Z5 — {00, i5}.

Subcase 1.1: If ij =10, d = u{®. Then J = (s,
71 070(Q), 180, 19°, 10°, 4°, Pio, u2°,1u%1, W', Dy,
t()l t()l tUl R(Tla u817 'll/(1)17 Uo , Dlla t tll tll

R11 , u21, ulo,d ) is a path of BF(n) Jomlng s to d.
See Figure 2(a) for illustration.

Subcase 1.2: If ij =01, d =ub'. Then J = ( s
’Yl) O’yg(Q) t P017 U’Qla u(l)la u(l)lv D1_117 téla tll
ttl)la Rl_l ) U%Iv uloa

u(1)07 DlO ’ t%Oa tlov t 0’ Rl_Olv U%Oa
uil, d ) joins s to d. See Figure 2(b)

Subcase 1.3: If ij =11, d = u}*. Then J = (s,
’7? 0700(62)7 to t DOla U/gl) U(1)17 U’2 3 R017 tO )
tlla P117 ’U,%l, uloa u007 Dl_() ) t Rlo ’ uOOa

uil, d) joins s to d. See Flgure 2(0).

Case 2: Suppose that 2 # 0"~2. By induction hy-
pothesis, there is a hamiltonian path Q of BF(n —2)
joining s’ = (0,0"2) to d’ = (0, z) such that s’ is in-
cident with a level-(n—3) edge and d’ is incident with
a level-0 edge. Furthermore, let si? = (h,pg0"~?)

and dj? = (h,pqz) for any p,q € Zy, h € {0,1,2}.
Obviously, 7¥ o 7J(Q) joins s)° = s to d3°. By
Lemma 4, there is a totally scheduled hamiltonian
cycle CP® = (dg?, di?, d5%, Rpq, dp?) of BF§(n) for
any p,q € Zz. By Corollary 2, there is a hamiltonian
path T% = (s% lJ,cl;j,dzlj,c@ of BFS{( ) joining
5% to d.

Subcase 2.1: If ij = 00, d = d3°. Then J = (s,
7?078(62)’ d807 d(ljov dfl)ov R1_01’ déoa dllv dglﬁ R&la d817
d, dt, Ry, dit, di°, d) joins s to d. See Figure
3(a).

Subcase 2.2: If ij = 10, d = d}°. By Lemma 5,
there 1s a hamiltonian path L' = ( d}', Dy, s{!,
51t 52 1) of BF, 1( ) joining dil to sit. Then J =
<S ’71 O’YO(Q) d d(lna d » Rot, dglﬂ dll’ Dhy, 8(1)1’
sit, 83t s10 W, d2 , di0, d> joins s to d. See Figure
3(b).

Subcase 2.3: If ij = 01, d = d}*. By Corollary
2, there is a hamiltonian path S1* = ( d}!, Uy, si!,
5l17 50 > OfBF()lll( ) Then J = <57 V?O’YO(Q) d(2)0’
d ,d30, di0) dl°, Ry, di°, dit, Uiy, sit, sit, spt,
st W01, d d(fl, d) joins s to d. See Figure 3(c) for
illustration.

Subcase 2.4: If ij = 11, d = d}!. By Corollary
2, there is a hamiltonian path S% = < d$t, Uos, s9t,
s(ln7 s01 ) of BFg (n). Then J = (s, 79 08(Q), d3°,
AV Upr, s9%, 891, 91, sit, Wiy, dit, di°, di°, Ryg,
di® dit, d) joins s to d. See Figure 3(d)

Note that J is a 1-container of BF(n) joining s to
d. By Lemma 2, V(BF(n)) -V (J) = V(BFy7(n)) —
V(19019(Q)) = U™y {15, 9(us)} for some m > 1 with
{u; |1 <i<m}n{g(u;) |1 <i<m}=¢. Further-
more, %, {(f(u:), g~ o f(ui))} € E(J). By Lemma
3, there exists a 1*-container of BF(n) joining s to
d. Thus, the requirements are all satisfied. O

4 3*-containers of BF(n)

Based on the symmetry of BF'(n), only the containers
between two vertices at the same level and the con-
tainers between two vertices of odd level differences
are concerned.

Assume that ¢ € Z, for n > 3. A sub-
graph G of BF(n) is (-designed if G spans BF(n)
and every level-/ vertex of G is incident with at
least one level-(/ — 1)moa» edge and at least one
level-¢ edge. Obviously, ’yﬁ_1 o vi(G) spans W+1 o
vi(BF(n)) = BFZg_H(n +2) if G is (-designed. Let
s={lapay ...an—1) and d = (¢, bgby ...b,_1) be two
distinct level-£ vertices of BF(n). Since BF(n) is
vertex-transitive, we define the automorphism p, 4 =
fn—10...0pu1 0 g over V(BF(n)) where for 0 <i <
n—1, pi = g1 Qitt)mea n = O(i+t)moa n, a0d p; = f



Table 2: Hamiltonian paths of BF(3) as the induction bases.

d A hamiltonian path of BF(3) from (0, 000) to d with the desired property
70, 100) (0, 000}, (2, 001), (1, 001), (0, 101}, (2, 101}, (1, 111}, (0, 011), (2, 011), (1, 011, (0, 111y, (2, 111}, (1, 101),
(0,001), (2,000), (1,010), (0, 110), (2, 110), (1, 100), (2, 100), (1, 110}, (0, 010), (2, 010), (1, 000), (0, 100))
{0, 010) ({0, 000y, (2, 001y, (1, 001), (0, 101y, (2, 101y, (1, 111y, (0, O11), (2, 011), (1, 011), (0, 111), (2, 111y, (1, 101y,
(0, 001), (2, 000), (1, 000), (2, 010), (1,010), (0, 110), (2, 110), (1, 100), (0, 100}, (2, 100}, (1, 110), (0, 010))
{0,110y ({0, 000, (2, 001), (1, 001y, (0, 101}, (2, 101}, (1, 111}, (0, 011), (2, 011), (1, 011), (0, 111}, (2, 111}, (1, 101),
(0,001), (2,000), (1,000), (0, 100), (2, 100), (1, 100), (2, 110), (1, 110}, (0, 010), (2, 010), (1, 010), (0, 110))
{0, 001) (0, 000y, (2, 001), (1, 001y, (0, 101y, (2, 100y, (1, 110}, (0, 010), (2, 010, (1, 000), (2, 000), (1, 010), (0, 110},
(2,110), (1, 100), (0, 100), (2, 101), (1, 111), (0,011), (2,011), (1,011), (0, 111}, (2, 111), (1, 101), (0, 001))
(0, 101) 770, 000Y, (2, 001}, (1,001}, (0, 001}, (2, 000), (1, 000Y, (2, 010}, (1, 010), (0, 110}, (2, 110}, (1, 100), (0, 100,
(2,100), (1,110), (0, 010), (2, 011), (0, 011), (1, 011), (0, 111), (2, 111), (1, 111), (2,101), (1, 101), (0, 101))
{0, 011) (0, 000y, (2, 001), (0, 001y, (1, 101y, (2, 101y, (0, 100}, (1, 100Y, (2, 110, (0, 110), (1, 010), (2, 000), (1, 000),
(2,010), (0, 010), (1, 110), (2, 100), (0, 101), (1,001), (2,011), (1,011), (0, 111), (2, 111), (1, 111), (0, 011))
(0, 111) ({0, 000}, (2, 001y, (0, 001y, (1, 101y, (2, 111), (1, 111), (2, 101), (0, 100, (1, 100y, (2, 110y, (0, 110), (1, 010),
(2,000), (1, 000), (2, 010), (0, 010}, (1, 110), (2, 100), (0, 101), (1, 001), (2, 011}, (0, 011), (1,011}, (0, 111))

BF 2’ (n) BFo’(n)  BFg(n) BFi(n)
d

10
t
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BF o1’ (n) BF.’(n) BFg(n) BFgi'(N) BF 1 (n) BE.’(n) BFg(n) BFgi'(n)
d d

10
ul .

(b) Subcase 1.2 (c) Subcase 1.3

Figure 2: Illustrations for Case 1 of Lemma 8.
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dg a2’
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00 00
Sé0 S0 o, Sy
S5 1 Sz s

(c) Subcase 2.3 (d) Subcase 2.4

Figure 3: Illustrations for Case 2 of Lemma8.



otherwise. For any path joining s to d, say P = (s =
Vg, V1, ..., Uk = d) with some k > 1, we further define
Ms,d(P) = <d = Ms,d(v0)7us,d(vl)7 ) Ms,d(vk) = S>'

For the sake of clarity, the proofs of the following
lemmas are described in Appendix.

Lemma 9. Assume that n is an odd integer greater
than or equal to 3 and also that ¢ € Z,,. Let s and d
be two distinct vertices at level £ of BF(n). Then
there exists a 3*-container {Py, Py, Ps} of BF(n)
joining s to d such that the following requirements
are all satisfied: (i) both Py and P begin with level-
£ edges, (ii) only one path of {Py, Py, Ps} ends up
with a level-£ edge, (iii) at least one of Py and Ps is
weakly €-scheduled, (iv) there are two wvertices vy, vo
of I(Py) U I(Ps3) so that psq(vi) = ve and each
of {v1,v2} is incident with a level-(¢ — 1)moan edge
and a level-¢ edge, and (v) the subgraph generated by
E(P1)U E(Py) U E(P3) is ¢-designed.

Lemma 10. For n > 3, assume that {5 and {4 are
two integers of Z.,, such that £y — ¢y = 1. Let s be
any level-ls vertex of BF(n) and d be any level-ly
vertex of BF(n). Then there exists a 3*-container
{P1, Py, Ps} of BF(n) joining s to d such that the
following requirements are satisfied: (i) only Py ends
up with a level-£4 edge, (ii) (s,g(s)) € E(Py)UE(Ps),
(iii) at least one of P and Ps is weakly 4-scheduled,
and (i) the subgraph generated by E(P;) U E(Pz) U
E(Ps) is £q-designed.

Lemma 11. Let s be any level-0 vertex of BF(4) and
d be any level-3 vertex of BF(4). Then there exists
a 3*-container {Py, Py, P3s} of BF(4) joining s to d
such that the following requirements are satisfied: (i)
only Py ends up with a level-3 edge, (ii) Py or P is
weakly 3-scheduled, and (iii) the subgraph generated
by E(Py) U E(Py) U E(Ps) is 3-designed.

Lemma 12. For n > 5, assume that {5 and {4 are
two integers of Z, such that €y — s is odd between
3 and n — 1. Let s be any level-ls vertex of BF(n)
and d be any level-Lq vertex of BF(n). Then there
exists a 3*-container {P1, Py, Ps} of BF(n) joining s
to d such that the following requirements are satisfied:
(i) only Py ends up with a level-£4 edge, (ii) at least
one of P» and P3 is weakly €4-scheduled, and (iii)
the subgraph generated by E(Py) U E(Py) U E(P3) is
Ly4-designed.

By Lemma 9, Lemma 10, Lemma 11, and Lemma
12, we derive the following result.

Theorem 3. Let n > 3. Then BF(n) is 3*-
connected if n is odd and is 3*-laceable otherwise.

5 4*-containers of BF(n)

By Lemma 9 and the automorphism p, 4 defined
above, we have the following corollary.

Corollary 3. Assume thatn is an odd integer greater
than or equal to 8 and also that ¢ € Z,,. Let s and d

be two distinct level-€ vertices of BF(n). By Lemma
9, there is a 3*-containers { Py, Py, P3} where Py be-
gins with a level-(€ — 1)moan edge. Then Q = {Q1 =
(oa(P) ™, Q2 = (t0.a(P2)) ™, Qs = (sea(P3)) '}
is also a 3*-container of BF(n) joining s to d with
the following conditions: (i) only one path of ) begins
with a level-€ edge, (ii) only Q1 ends up with a level-
(£ = 1)moin edge, (iii) at least one path of {Q2,Qs} is
weakly (-scheduled, (iv) there are two level-€ vertices
v1,v2 of (I(P2)UI(P3))N(I(Q2)UI(Q3)) such that
ts,a(v1) = vo and each of vi and vy is incident with
a level-(£ — 1)moan edge and a level-C edge, and (v)
the subgraph generated by E(Q1) U E(Q2) U E(Q3) is
{-designed.

With Lemma 9 and Corollary 3, we have the follow-
ing proposition. The proof is described in Appendix.

Proposition 1. Assume that n is an odd integer
greater than or equal to 8 and also that £ € Z,,. Let s
and d be two distinct level-£ vertices of BF(n). Then
there is a 3*-container of BF (n) between s and d such
that each of {s,d} is incident with only one level-¢
edge.

Lemma 13. Assume that n is an odd integer greater
than or equal to 8. Let s and d be two distinct vertices
at the same level of BF(n). Then there exists a 4*-
container of BF(n) between s and d.

Proof. Without loss of generality, we assume that
s = (0,0™ and d = (0,ijz) with some i,j € Zo
and z € Z5 2. The desired 4*-containers of BF(3)
are enumerated in Table 3. When n > 5, BF(n) is
partitioned into {BF§Y (n) | p,q € Zz}.

Case 1: Suppose that @ # 0"72. Let s}? =
{(h,pq0"~2) for any p,q € Zy and h € {0,1,2}. Then
we have to consider the following subcases.

Subcase 1.1: Assume that ij = 00. By Propo-
sition 1, we build a 3*-container {Pj, P2, P3} of
BF(n — 2) joining s/ = (0,0"72) to d' = (0,x).
Let T' be the subgraph of BF(n — 2) generated
by E(Pi) U E(Py) U E(P3). Since BFyy(n) =
W o Ad(BF(n — 2)), 7 o 4§(T') consists of three
disjoint paths {.J1,J2, J3} of BF&’{)(H) joining s to
d. By Lemma 4, there is a totally scheduled
hamiltonian cycle C%' = (sQ!, s, 891, Ro1, sQ!) of
BF&’ll(n). By Lemma 7, there is a hamiltonian cy-
cle C10 = (di°, d1°,d3°, Tyg, di°) of BFyy (n) —{si°}.
By Lemma 5, there is a hamiltonian path P! =
(s3t st sit ,Wll,d11> of BFyy (n). Then, let J; =
(s, 519, s3t, st', s9Y, Ry, 89, 91, st Wi, dit,
d% s T107 déo, d%o, d>, and thus {Jl,JQ,Jg,J4} is a
4-container of BF(n) joining s to d. See Figure 4(a)

for illustration.

By Lemma 2, V(BF(n)) — Ui, V(%)

V(BF(?{)( ) = V(R org(D) = U;ﬂ {wy, 9(uy)} for

some m > 1 with {u; [1<j <m}ﬂ{g uj) 1<y
m} = ¢. Moreover, Ui {(f(u;), 97" o f(u;))}

U?:l E(J;). Thus, by Lemma 3, there is a 4*-

container of BF'(n) joining s to d.

N I/\



Table 3: 4*-containers of BF(3) joining (0,000) to the other level-0 vertices.

d 4*-container {Jy, Jo, J3, J4} joining (0, 000) to d.

(0, 100) J1 = ((0, 000), (1, 000, (0, 100))
Jg = ({0, 000), (1, 100), (0, 100))

J3 = ({0, 000), (2, 000), (1,010), (2,010), (0, 010), (1, 110), (2, 100), (0, 100))

J4 = ({0, 000), (2,001), (0,001), (1,001), (0, 101), (1, 101), (2, 111), (0, 110), (2, 110), (0, 111), (1,011), (2, 011), (0, 011), (1, 111), (2, 101), (0, 100))
(0, 010) J1 = ({0, 000), (1, 000), (2, 010), (0, 010))

Jo = ({0, 000), (1,100), (0, 100}, (2, 100), (1, 110}, (0, 010))

J3 = ((0,000), (2,000), (1,010), (0,010))

J, = ({0, 000), (2,001}, (1,001), (0,001), (1,101), (0, 101), (2, 101), (1, 111), (2, 111), (0, 110), (2, 110), (0, 111), (1, 011), (0, 011), (2, 011), (0, 010))
(0, 110) 71 = ({0, 000), (1, 000), (2, 010), (0, 010}, (2, 011), (0, 011), (1, 011), (0, 111y, (2, 110), (0, 110))

Jo = ({0, 000), (1, 100), (0, 100), (2, 100), (1, 110), (0, 110))

J3 = ((0,000), (2,000), (1,010), (0, 110))

Ja4 = ({0, 000), (2,001), (1,001), (0,001), (1,101), (0, 101), (2,101), (1, 111), (2, 111), (0, 110))
{0, 001) J1 = ({0, 000), (1, 000), (2, 010), (1,010), (0, 010), (2, 011), (1, 001), (0, 001))

Jy = ({0, 000), (1, 100}, (0, 100}, (2, 100), (0, 101), (2, 101), (1, 111), (0,011}, (1,011}, (0, 111), (2, 110), (1, 110), (0, 110), (2, 111), (1, 101), (0, 001))

J3 = ({0, 000), (2, 000), (0, 001))

J4 = ({0, 000), (2,001), (0,001))
{0, 101) 71 = ({0, 000), (1, 000), (2, 010), (0, 011y, (2, 011y, (1, 011), (0, 111y, (1, 111y, (2, 101y, (0, 101y}

Jo = ({0, 000), (1,100}, (0, 100}, (2, 100), (0, 101))

J3 = ({0, 000), (2,000), (1,010}, (0,010), (1, 110), (2, 110), (0, 110), (2, 111), (1, 101}, (0, 101))

J4 = ({0, 000), (2,001), (0,001), (1,001), (0, 101))
(0,011) 71 = ({0, 000), (1, 000), (2, 010), (0, 011))

Jo = ({0, 000), (1, 100), (2, 100), (0, 100), (2, 101), (0, 101), (1, 101), (2, 111), (1, 111}, (0, 011))

J3 = ((0,000), (2,000), (1,010), (0,010), (1, 110), (0, 110), (2, 110), (0, 111}, (1, 111), (0, 011))

J4 = ({0, 000), (2,001}, (0,001), (1,001), (2,011), (0, 011))
{0, 111) J1 = ({0, 000y, (1, 000), (2, 010), (1,010}, (0, 110), (1, 110), (0, 010y, (2, 011y, (0, 011y, (1, 111y, (0, 111))

Jo = ((0,000), (1,100), (2, 110), (0, 111))

J3 = ((0,000), (2, 000), (0,001), (1,001), (0, 101), (2, 100), (0, 100), (2, 101), (1, 101), (2, 111), (0, 111))

J4 = ((0,000), (2,001), (1,011), (0, 111))

00 . ; 00 y . ,
BF o1 (n) BFo?iU(n) BFof,)ll(n) BF 0%11(n) BF o1 (n) BF 0%10(n) BF0?11(n) BFo,lll(n)
10
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!
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(b) Subcase 1.2

BF () BFg’(n) BF&'(n) BFg(n)
Set

(c) Subcase 1.3 (d) Subcase 1.4

Figure 4: Illustrations for Case 1 of Lemma 13.



Subcase 1.2: Assume that ij = 10. By Lemma 9,
there is a 3*-container {P;, Py, P3} of BF(n—2) join-
ing s’ = (0,0"2) to d’ = (0, x) such that only P; be-
gins with a level-(n—3) edge. By Corollary 3, there is
another 3*-container {Q1, Q2, Qs} of BF(n—2) join-
ing s’ to d’ such that only @7 ends up with a level-(n—
3) edge. Moreover, (I(Py)UI(P3))N(I(Q2)UI(Q3))
contains a level-0 vertex u incident with a level-0 edge
and a level-(n —3) edge. We set u = (0, y) with some
y € Z3~? — {0"2, z}. Further, we set u}? = (h, pqy)
and dpq (h, pqx) for any p,q € Zs and h € {0,1,2}.
Let 1"1 be the subgraph of BF(n — 2) generated by
E(Q1) U E(Q2) U E(Q3). By Corollary 3, T'y is 0-
designed with respect to BF(n—2). Thus, 70~J(I'1)
spans BF& Y(n) and consists of three disjoint paths
{D{° DY° DY} joining s to d°.  Accordingly, we
have D00 (s, Too,d ,d¥0,d9%) where Tpo joins s to
d3°. Moreover, D% and D° form a cycle which can
be written as (s, Woo,uoo,ul ,ud0, Ugo, d°, Ao, 8).

Suppose that 'y is the subgraph of BF (n—2) gen-
erated by E(Py) U E(P;) U E(P3;). By Lemma 9,
I'y is 0-designed with respect to BF(n — 2). Hence,
¥ ©7$(I'2) spans BFy{(n) and consists of three dis-
joint paths {DZIJ,D;],D”} between 32 and d. Ac-
cordingly, we write DY = <3;J,sl 183+ Tij» d) where
Ti; joins s§ to d. Moreover, DY and DY form a
cycle which can be written as ( séj7 Wij, uf)j7 ullj,

uéj, Uij, d, Asj, séj ). By Lemma 4, there is a to—

tally scheduled hamiltonian cycle CP? = ( sb?, 51 ;
pq pa_,pq , Pd pq
S35 Bpgs ug uy, uy',s pq7d0ad17d2a Hyg, sp°

) of BF§*!(n) for pq € Z3 — {00,ij}. Then we cre-
ate a 4*-container {.J1, Ja, Js, J4} of BF(n), in which
Ji = (s, Too,dgo,d(fo,d> Jy = (s, Agg', d9°, Ugg', ud,

00 — 00 10

u17u07W107527A107 d), J3 = (s, Woo,U07U1,
11 11

’LL2 B D117 d d d H117 S07, S175 82 5 R117 uO 3

U(1)17 u2 3 DOla d d(l)la d817 H017 5817 5?17 52 B Rola
udt, utt, ul?, U107 d), and Jy = (s, 519, s{°, Tho, d).
See Figure 4(b).

Subcase 1.3: Assume that ij = 01. Sim-
ilar to Subcase 1.2, we create a 4*-container

{J1, JQ,Jg, J4} of BF(n), in which J; = <5 Too, d3°,

00 - 10 10 10

d17d D107U’2’u1au07R10>s275175213R117
11 11

uo,ul,uz,Dll,d d d> J2—< AOO?d

-1 00 ,01 1
Uoo,ug,ul,uO,Wm,sQ,AOl,d) J3—<s WOO,

u807 u(l)oﬂ ’LL2 s UOla d>a and Jy = <5 S%Oa 5(%05 Hl_Oa
di0, di dit) Hyq, spt, s, 81 To1, d). See Figure
4(c).

Subcase 1.4: Assume that ij = 11. Sim-

ilar to Subcase 1.2, we create a 4*-container
{Jl, JQ,J3,J4} of BF(TL), in which Jl <8 Too, d
d d H017 8815 S?la S(Q)la R017 u(O)la u(l)la U’(% ) W11 9
17 Al_l I > J2 = <5a Aaola dg07 UOO ’ u(2)0’ u(1)07 u(2)1’
DOl» d8 ) dlla d> JB = <8 WOO7 Ugo» u%oa R107
séo, st spt, T117 d) and J4 = (s, 519, s{°, Hml7 d30,
O Y, D10 s udd ult wdl, Upy, d). See Figure 4(d).
Case 2: Suppose that z = 0""2.  Let t}7
(h, pqO"—31), (h, pqO"~2), and wP?

pqg
Up, =

m |l

n — 1, pg0™31) for any p,q € Zs and h

( y

0,1,2}. Obviously, s = uQ°, d = u”, and
0 0

{(s,w"), (d, wij)} C E(BF(n)). Suppose that
CY0 = (5,u° u3’, Dgo,s) is a cycle of length n,
in which Dgg = (u9®,g(ud®),...,g"3(uy®)). By
Lemma 6, there is a totally scheduled hamiltonian cy-
cle C90 = (w®,¢3°,¢9°,¢3°, Rog,w) of BFyY (n) —
V(CY%). By Lemma 7, there is a hamiltonian cy-
cle (d,u ,uy , Rz, d) of BF(H( )—{w, u ,ut} and
for pg € Z2 — {00,i5}, there is a hamiltonian cycle
ore = (87, tpq 5%, Tpq, to") of BFg ' (n) — {u}?}. By
Lemma 4, there isa totally scheduled hamiltonian cy-
cle (ug”, ui?, us?, Apg,ug?) of BF§Y (n) for any p,q.
Subcase 2.1: Assume that 75 = 10. We create a
4*—container {J1, J2, J3,J4} of BF(n), in which J; =

<5 ula d), J2—<5u1, d), Js = (s, D007u2au(1)1a
7 All; uéla u%la ’LL2 ; RlOa >7 and Jy = < S, OO)
R5017 £00, 01 40T T 401 400 400 410 410 4,10 ).
See Figure 5( )
Subcase 2.2: Assume that ij = 01. Let
= (udt ult udt 7Du,uo ) be a cycle of length
n, in which Dy = (udl, g(udl), ..., g"3(uil)). By

Lemma 6, there is a totally scheduled hamiltonian
cycle Q11 = (1}t ¢1t e Uy tdt) of BF&’ll(n) —
V(Q}Y). Then we build a 4*-container {Jy, Jo, J3, J4 }
of BF(n), in Which Ji = (s,ul® ud! ,Dn,uél, 1d),
J2 = <5 ul 7u2 7R017 >a J3 = <S D003u2 7“117d>a
and Jy = (s, w0, Ry, 90, ¢90, #3019, ¢30 T10 , 130
tH e Uy, t8t, 69 81 w0, d>. See Figure 5(b).
Subcase 2.3: Assume that ij = 11. We create a
4*- container {1, J2, J3, 4} of BF( ), in Which J1
(s,ui®, uj ,Ru, > J2 = (s,uf,ud', o1, ug', ui 7d>
J3 = (s, D00 , u2 o ufl, dy, and Jy = (s, w°, Ry,
190, 90 490 410 10 ot 430 L 4t w't, d>. See
Figure 5( ) O

Lemma 14. For n > 3, assume that {5 and €4 are
integers of Z,, such that 1 < £y —¥0s; <n—1. Let s
be any level-fs vertex of BF(n) and d be any level-
Ly vertex of BF(n). Then there is a 4*-container
Q of BF(n) joining s to d such that the following
requirements are satisfied: (i) at least one path of €2,
ending with a level-(bq — 1)moan edge, is weakly {q-
scheduled, and (ii) at least one path of Q, ending up
with a level-£y edge, is weakly £4-scheduled.

Proof. Without loss of generality, we assume £5 = 0
such that s = (0,0") and d = ({4, z1ijxe) with
some 1 < lyg < n-—1,14,] € Zs, x1 € ng, and
Ty € Zgﬁfﬁd. We prove this lemma by induction
on n. Note that we only construct the desired con-
tainer for 1 < ¢4 < |n/2]. By symmetry of BF(n),
the required container for [n/2] +1 < 3 < n—1
can be easily derived. Moreover, only odd ¢4 will be
concerned when n is even. The induction bases, de-
pending on n € {3,4}, can be checked by a computer
program. As the induction hypothesis, we suppose
the statement holds for BF(n —2) with n > 5. Then
we partition BF(n) into {BF})% . (n) | p,q € Za}.
By the induction hypothesis, there is a 4*-container
{P|, P}, P}, P;} of BF(n — 2) joining s’ = (0,0"~2)
to d = (€g,x122) such that (1) P| is weakly £4-
scheduled and ends up with a level-(€g — 1)moa » edge,



BF ¢ '(n)

BF ¢ (n)

BFgi(n) BFgi'(n)

BF g1 (n) BFgr(n)  BFgi(n)  BFgi(n)

BFg(n)  BFg(n)

UIan

(b) Subcase 2.2

(c) Subcase 2.3

Figure 5: Illustrations for Case 2 of Lemma 13.

(2) Pj and P; ends up with level-£4 edges, and (3) Py
is weakly £4-scheduled. That is, at least one level-¢4
vertex of I(P]), u' = (€q,y1y2) with |y1| = |z1] and

|ya| = |x2], is incident with only one level-¢4 edge on
P{. Similarly, there is at least one level-¢; vertex of
I(P)), t' = (€q, z122) with |z1] = |z1] and |2z2| = |x2],

incident with only one level-¢4 edge on P;. Let T
be the subgraph of BF(n — 2) generated by E(P])U
E(P}) U E(P;) U E(P;). Let di* = (€q+ h,z1ijzs),
up® = (Lg + h,y1pqye), and t)? = (lq + h, z1pqz2)
for any p,q € Zo, h € {-1,0,1,2}. Obviously,
{0, u), (W, u$)} € B0, 0 48,(P)) and
{(H80,899), (199, 48°)} © B3, 4,042, (P}))- Moreover,
’y?d 41 o’ygd (P}) and ’y?d 41 O’y?d (Py) form a cycle which
can be written as (s, Qoo, t3°, t9°, 9%, Hog, dS°, Ao, s).

Case 1: Suppose that ij = 00. By Corol-
lary 2, there is a hamiltonian path (3%, Ty, d1%)
of BFeld’?edH(n). By Lemma 5, there is a hamil-
tonian path (t91, ¢3!, Wy, dSt) of BFZO(;}ed+1(n). By
Lemma 4, there is a totally scheduled hamiltonian
cycle Ctt = (t3t 11 431 Ry, tdh) of BFZl(;,,led‘i’l(n).
Then Py = ¢ ., 099, (P]), P2 = 9,1 0% (P,
tgl, W()l, dgl, d(l)o, d>, and P4 = <S, Qoo, t80’ t?o, t(l)o,
Tho, di°, d) are four disjoint paths joining s to d. See
Figure 6(a) for illustration.

Case 2: Suppose that ij # 00. Let 7 = ({43 —
1,2122). By Lemma 10, there is a 3*-container
{51,55,55} of BF(n — 2) joining 7 to d’ such that
(1,9(7)) € E(S%) and also that S} ends up with a
level-¢, edge. Let © be the subgraph of BF(n — 2)
generated by E(S]) U E(Sy) U E(S3). According to
Lemma 10, © is £4-designed. Therefore, 7; ,;07; (©)
spans BFZ;{ldﬂ(n). Then we have ng—kl oy, (S1) =
<tl—jlvRijv dé]’ dllj7d>7 7&-},-1 OFYéd(Sé) = <tl—le Dy, d),
and ) o, (S5) = (t7,,td ¢, t5, Hij, d) for some
paths R;;, D;j, and H;;. For pqg € Z3 — {00,ij},
there is a totally scheduled hamiltonian cycle CP? of

BF}, +1(n) by Lemma 4 and there is a hamiltonian

path (1%, Tpq, d5?) of BEF)% .1 (n) by Lemma 5.

Subcase 2.1: If ij = 10, d = d}°. By Corollary
2, there is a hamiltonian path Sj; of BFZI(;}KdJrl(n)
joining #11 to Oc(l)(l)l (S)lllCh t}(l)%t ((7;61(1)17’11%010) ElOE(SlolO). 1\Z)Ve
et A L lurue), (e ), (gt (Bt )
(tll 7t211)a (t21 ’tlll)’ (d117d211)a (d117d5)1)a (d21 7d111 )a
(dload2 )7 (t207t1 )7 (ug y U )a (ucl) » Ug )7 (d? 7d0 )}
and B = {0 ), (10,40 (42,0 () )
(4D, (40,4, (1)), (017, (7t ),
(ug > uy'), (ui,uy'), (di7,dyt), (ughsupt), (dit,dat)}
Then a 4-container { P, Py, P3, Py} of BF (n) between
s and d can be formed from the subgraph generated
by (B(30,41 078, (1) U (141 077, (8)) UE(CO) U
E(S11) U A) — B. See Figure 6(b) for illustration.

Subcase 2.2: If ij = 01, d = dj'. We set A =
(D ) ) i
(dl 7d0 )7 (dl ’d2 )7 (dl 7d0 )a (dO 7d1 )7 (tO atl )}
w5 ) i )
(dl ’d2 )7 (uO , Ul )a (dO 7d1 )’ (Lpto )7 (tl ,t2 )’
(d9t,d9Y), (dit,dit)}. A 4-container {Pi, Py, P3, Py}
of BF(n) between s and d can be formed from the
subgraph generated by (E(’y?ﬁl o*y?d () UE(’yl}dJrl o
’ygd(@)) UE(C)UE(T11)UA) — B. See Figure 6(c).

Subcase 2.3: If ij = 11, d = d}'. We set A =

(ug®, ui®), (u},up?), (83°,¢5°), (t5°,¢9"), (d}°,d3'
(99, dB0), (@10, a3l (0, 141), (180 41), (10, et
(dy o). (@), and set B (g iud).
Gyt od ) (), i ), g, d),
(tO 7t1 )v (t—l’to )a (tl at2 )a (dl de )a (do 7d1 )a
(31, t91)}.  Then a 4-container {Pi, P, P3, P;} of
BF(n) between s and d can be formed from the sub-
graph generated by (E(0,., 018,(1) U E(d 4, o
7¢,(©)) UE(C') U E(Ty1) U A) — B. See Figure 6(d)
for illustration.

By Lemma 2, V(BF(n)) — U_,V(P) =

V(BE 1) = V(41 078, (D) = UL {ui, g(uwi)}
for some m > 1. Moreover, (J; {(f(u;),g"

)

)
);
)
)

[}
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(a) Case 1 (b) Subcase 2.1
BF{U {f’*l( ) fd ’d*'l(n) BF[d "d+l(n) BF’d fd’fl(n) ’u lfd+1(n) BF ldO a+1(n) BF d d+1(n) BF ¢ d+1( )
7"%1" er(l") Cy /d+1 /d(f“) Ty F”/d‘i’l ’,/d(r)

(c) Subcase 2.2

(d) Subcase 2.3

Figure 6: Illustrations for Lemma 14.

fw))} € Uiy E(P).

is a 4*-container of BF (n) between s and d.

Thus, by Lemma 3, there
O

According to Lemma 13 and Lemma 14, we derive
the following theorem.

Theorem 4. Let n > 3. Then BF(n) is 4*-
connected if n is odd and is 4*-laceable otherwise.

Combining Theorem 1, Theorem 2, Theorem 3,
and Theorem 4, we summarize the main result as
follows.

Theorem 5. Letn > 3. Then BF(n) is super span-
ning connected if n is odd, and is super spanning lace-
able otherwise.

6 Conclusion

This paper is aimed to show that BF(n) is super
spanning connected for n odd and super spanning
laceable for n even. A k-container Cjy(u,v) be-
tween two distinct vertices w and v in G is a set
of k disjoint paths between u and v. The length
of a Ck(u,v), written as [(Ck(u,v)), is the length
of the longest path in Ck(u,v). The k-wide dis-
tance between u and v is dg(u,v), which is the
minimum length among all k-containers between w
and v. Let x be the connectivity of a graph G.
The wide diameter of G, denoted by D.(G), is
the maximum of x-wide distances among all pairs
of distinct vertices in G. Assume that G is k*-
connected. We may define the k*-wide distance be-
tween any two vertices u and v, denoted by dj (u,v),
to be the minimum length among all k*-containers
between w and v. Let D;(G) = max{d(u,v) |

11

u and v are two different vertices of G}. We say
that D} (G) is the k*-diameter of G. In our future
work, we are interested in computing D} (BF'(n)) for
n > 3.

Appendix

A  Proof of Lemma 9

Proof. Without loss of generality, we assume that
¢ = 0 so that s = (0,0™) and d = (0,ijx) for some
i,j € Zs, and some x € Zg_2. Then this lemma, will
be proved by induction on n. The induction bases
depend upon 3*-containers of BF'(3), listed in Table
4. Next, suppose that the statement holds for BF (n—
2) with n > 5. To create the desired container, we
may partition BF(n) into {BFJY(n) | p,q € Zs}.

Let w
tpq

Case 1: Suppose that z = 0" 2
f71d) = (n — 1,ij0”’31> Moreover, let
(h,pq0"~2) and u} (h,pq0"~31) for any p,q
Zy and h € {O 1 2} Thus, s 7
Lemma 7, there is a hamiltonian cycle QY =
(d, tllj,t;],Dw,d} of BFy1(n) — {w,ug J w7}, For
pq € Z3 — {ij}, there is a 0-scheduled hamiltonian
path (tzf s Tpg, ug uh?, us?) of BEG(n) by Corollary
2 and there is a totally scheduled hamiltonian cy-
cle CP1 = (tb? 9 57 Rpq, ub?, ul?, ub?, Wy, th?) of
BEg}(n) by Lemma4 Then we create a 3*-container
{Py, Py, P;} of BF(n) as follows.

S
By

Subcase 1.1: If ij = 10, then P = (s, WJO,
uSO, uy’, uSl,u?l, 0T, T, 00 gl ) ull, ull,
up', Rn ; télv it 130, D10, d), Py = (s, t1°, d), and

P; = (s, 00 Roo, ud®, ui® ul®, w, d). Obviously,



Table 4: 3*-containers of BF(3) as induction bases. The vertices fitting the fourth requirement are marked
by star symbols.

d 3*-container { Py, Py, P3} joining (0, 000) to d

(0, 100) ({0, 000), (2, 000), (0, 001), (1, 001y, (2, 001), (1, 011y, (2, 011y, (0, 011), (1, 111), (0, 111), (2, 111), (1, 101y, (0, 101y, (2, L01), (0, 100))

v
-
|

Py = ({0, 000), (1, 100), (0, 100))
P3 = ((0,000), (1,000), (2,010), (0, 010)*, (1,010), (0, 110)*, (2, 110), (1, 110), (2, 100), (0, 100))
{0, 010) P, = ({0, 000Y, (2, 000), (0, 001), (1, 001), (2, 001y, (1, 011y, (0, 111y, (2, 111y, (1, 111}, (0, 011), (2, 011), (0, 010y
Py = ({0,000}, (1,000), (2,010), (0, 010))
P3 = ((0,000), (1,100), (0, 100)*, (2, 101), (1, 101), (0, 101), (2, 100), (1, 110), (2, 110), (0, 110)*, (1, 010), (0, 010))
{0, 110) P, = ({0, 000Y, (2, 000), (0, 001), (1, 001), (2, 001y, (1, 011y, (2, 011y, (0, 011y, (1, 111y, (0, 111}, (2, 111), (0, 110y)
Py = ({0, 000), (1,100), (0, 100)*, (2, 101), (1, 101), (0, 101), (2, 100), (1, 110), (2, 110), (0, 110))
P3 = ((0,000), (1,000), (2,010), (0, 010)*, (1, 010), (0, 110))
{0, 001) P, = ({0, 000), (2, 000}, (0, 001))
Py = ({0, 000), (1,000), (2,010), (1, 010), (0, 110), (2, 110), (1, 110), (0, 010), (2,011), (0, 011), (1, 111), (2, 101), (1, 101), (2, 111), (0, 111),
(1,011), (2,001), (0,001))
P3 = ((0,000), (1,100), (0, 100)*, (2,100), (0, 101)*, (1, 001), (0, 001))
(0, 101) P, = ({0, 000), (2,001}, (0, 001), (1, 001), (0, 101))
Py = ({0, 000), (1, 100), (0, 100), (2, 100), (0, 101))
P3 = ({0,000}, (1,000), (2,000), (1,010), (2, 010), (0, 010), (1, 110}, (0, 110)*, (2, 110), (0, 111), (1,011}, (2,011}, (0,011)*, (1, 111), (2, 111),

(1,101), (2, 101), (0, 101))

{0,011y Py = ({0, 000), (2, 001), (0, 001), (I, 001), (2, 011), (0, 011))

Py i ((0, 000), (1, 000), (2,000), (1,010), (0, 110), (2,110), (1, 110), (0, 010), (2,010), (0, 011))
P3 = ({0, 000), (1,100), (0,100)*, (2,100), (0, 101), (1, 101), (2, 101), (1, 111), (2,111), (0,111)*, (1, 011), (0, 011))
(0, 111) P; = ({0, 000), (2, 001), (0, 001), (1, 101), (2, 111), (0, L11))
Py = ({0, 000), (1,100), (0, 100)*, (2, 100), (1, 110), (0, 110), (2, 110), (0, 111))
P3 = ((0,000), (1, 000), (2,000), (1,010), (0,010), (2, 010), (0, 011)*,(1,011), (2,011), (1, 001), (0, 101), (2, 101), (1, 111), (0, 111))
BF°(N)  BFgP’(n)  BFH(N) BF ()
(a) Subcase 1.1
BFa°(N)  BFg’(n)  BF(N) BFJ(n) BFo(n)  BFg ()  BFg(n)  BF4(n)

(b) Subcase 1.2 (c) Subcase 1.3

Figure 7: Illustrations for Case 1 of Lemma 9.
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Ve I(P3) and ps q(ud’) = ul® € I(P3). See Figure
7(a).

Subcase 1.2: If ij =01, then P, = (s Woo , udl,
u(fo, uo 5 Rool, t d> P2 <8, t t2 s DOI, d>,
and P3 - <S tl ) TlOa uOOa U’%Oa uloa u%17 U2 ) Wlla
tat, ittt Ryq, u(l)l, u?l, Uo , w, dy. Obviously,

Ve I(P3) and ps a(ui®) = udt € I(Pg) See Figure
7(b).

Subcase 1.3: If ij = 11, then P, = (s, Wy,
ud?, ud0, udl, Rool 90 t(1)17d>, P2 = (s, 19, 9%, Roy,
ud?t, u(ln, udt, Wor, 91, tit) it D11, d), and P3 =

10 10 11

(s, 19, Thg, up?, ui®, u2 , urt, uo , w,d). Obviously,

Ve I(P3) and ps a(ul®) = udt € I(Pg) See Figure
7(c).

Case 2: Suppose that = # 0""2. By induc-
tion hypothesis, there is a 3*-container {P], Py, P}}
of BF(n — 2) joining s’ = (0,0""2) to d’" = (0,z)
such that Pj begins with a level-(n —3) edge and also
that there is a level-0 vertex ¢t = (0,y) € I(P}) in-
cident with a level-0 edge and a level-(n — 3) edge.
Let sp? (h,pq0"~2) and t7? (h,pqy) for any
p,q € Zs and h € {0,1,2}. As a consequence,

s0° = s. Let I' be the subgraph of BF(n — 2) gen-

erated by E(P])U E(Py) U E(P;). Since BFy{(n) =
v o ’y(i)(BF(n - 2)) and T' is 0-designed with respect
to BF(n — 2), 7] o 74(T) spans BFy{(n) and con-
sists of three disjoint paths {Pl”,PSJ,P?fJ} from s%

to d. In particular, let P” = <52J, 57,58, Dyj, d) with

some D;;. Moreover, P and P;  form a cycle which
can be written as (s ,Hm,tgj,tij,t;], ijdy Ao, S5 7.
By Lemma 4, there is a totally scheduled hamilto-
nian cycle <sgq,sﬁ’q,SQQ,qu,tpq,tfq,tgq,qu,sgq> of
BEg{(n) for pg € Z5 — {ij}. Then we create a 3*-

container { Py, P, P3} of BF(n) as follows.
Subcase 2. 1 If ij = 007 then P, = DOO7 P, =

(s, 890, 580, 10 , 130410, H&) , 890, Aao ,dy, and
P3 - <S 510752 B Rllvt Q11a3617 Sglasgla
R017t 01 QOla 30 ) 5%17 52 ) R107t(1)05 t t

Woo,d>. Obv1ously, sgt € I(P3) and ,usyd(so ) =

dit € I(P3). See Figure 8(a).

Subcase 2.2: If ij = 10, then P, = (s, 001, t9°,
tgov téov Hi)lv 207 A1017 d> P, = <5 5%07 50 ) DlOv
dy, and Ps = (s, 3(1)0, 82 , Rop, 91, 91 Q01, st
8%17 52 ’ R117 tO ’ t télv Q117 Séla 8(1)1; 82 ) ROOa
30, 19, 39, W107d>. Obviously, s§t € I(P3) and
s, d(s0 ) = d11 € I(P;). See Figure 8(b).

Subcase 2.3: If ij = 01, then P, = (s, anl, 9,
t?17 tglv H(;lla 8817 AOlv d> P, = <s 5(1)0a 32 | R007
t80, t?o, 9L, Wm, dy, and Pg = (s, 5}0, 80 ) Qlo , 130
t R;Oa 8207 81 ’ 82 ) Rlla t Qlla

ity 01

spt, 891 8O, Dg1,d). Obviously, s 10 e I(Pg) and
ps,a(sh?) = dit € I(Ps). See Figure 8( ).

Subcase 2.4: If zg = 11, then P; = (s, Qo_ol,
t(2)0’ t(lna t(%1> Hl_lla 82 ) Al_lv d), P2 = (s, 5(1)0a S(Q)Oa
Roo, 9%, 99, 91, Qo1, SO, sYt, 91, R(n, t817 t%la
tit ) Wu,d) and P3 (s, 51°, 50, Qg t3°, 10, 10
Ry, 530, 51 , s¢t, D11,d). Obviously, s 0 € I(P3)
and ps q(sy?) = di' € I(P). See Figure 8(d). O
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B Proof of Lemma 10

Proof. Without loss of generality, we assume £, = 1
and ¢4 = 2 so that s = (1,0") and d = (2,4jz) with
some i,j € Zy, and x € Z5 2. To construct the
desired 3*-container of BF(n), we partition BF(n)
into {BF&’f(n) | p,q € Zs}.

Case 1: Suppose that z 0"~2.  Assume
that w = (1,00y) is a level-1 vertex of Bng’lo(n)
other than s. Let u}? (h,pg0"~?) and wh?
(h,pqy) for any p,q € Zy and h € {0,1,2}. Thus,

w? = w, uf® = s, and uy = d. By Lemma

4, there is a totally scheduled hamiltonian cycle
pa _ (,,P4 D4 pa . pq DG pq , pq

CP1 = (uy",uy", Rpq, wy”, wi, wy", Dpg, ug' s up”) of

BF({’II(”) for any p,q € Zs. Then we build a 3*-
container {Py, Py, P3} of BF(n) joining s to d as fol-
lows.

Subcase 1.1: Ifij = OO then Py = (s,d), P> = (s,
00 -1 00 00 01
Uy D80 , 11())21 , wl , wio, Roo ,11>, and P3 = <6S u%O,
R017w07w1aw27D01au0>u17u27R107w0aw1a
10 10 11 11
wQaDIOaUOaul7u2aR117w0aw17w27D117u07

udt, d). See Figure 9(a) for illustration.
Subcase 1 2: If 45 = 10, then P1 = <5 u2 , Rou,

01 01 01 01 11 11
’LUO , Wy 7 ’LU2 ) D017 Uy, Uy, uO 7 D117 wy™, Wy,
_ 00 10

wO ) Rll 5 U2 5 ul 7d> P2 - <Sa U/2 3 ROOa Wy, Wy,

wa?, Dm, ud?, ui® d), and P3 = (s, ud’, DO_Ol7 wyY,
90wl Ry, d). See Figure 9(b).

w1,
Subcase 1.3: If zy =01, then P, = (s, u3’, Dy,

00 .01 11 11 111
w27w117 wO7R117u2au1’uO7D11aw2aw(1)07
wil, Roy',d), Po = (s,d), and Py = (s, u3?, Roo, wg”,
w%Oa w% ) D107 u(%ov u%oa U%Oa R107 wéov ’lU?(), w2 ) DOla
udt, uft, d). See Figure 9(c).

Subcase 1.4: If ij = 11, then P, = (s, u3', Ro1,

01 ,,01 01 01 .11 -1 . i1 .11
wOaw117w27D017u07u17u07D117w27w17

00 ,00 , 00
wOaR115d> P2 <s,u2,R00,w0,w1 aw27D00a

00 10 _ 10 10 .10
uo,ul,d> and P3 = (s, uO,Dw,wQ,w1 , Wy,
Ry, ud®, ul',d). See Figure 9(d) for illustration.

Case 2: Suppose that @ # 0”72, Let s}?
(h,pq0™~2) and d}" = (h,pqz) for any p,q € Zs,h €
{0,1,2}. Thus, s° s and df d. By
Lemma 4, there is a totally scheduled hamiltonian
cycle CP1 = (s b7 R, db?, dV9,d5%, Dy, sH, s77)
of BF§(n) for any p,q € Zy. By Corollary 2, there
is a 2-scheduled hamiltonian path (sh¥ Ty, d") of
BFéf’lk(n) for hk € {10,11}. Then we create a 3*-
container {Py, Py, P3} of BF(n) joining s to d, as
illustrated in Figure 10.

Subcase 2.1: If ij = 00, then P; = (s, s3°, Roo,

00 700 _ 00 p-1 10
do,dl,d>, P2—<8, s0°, OO,d) andP3—<s 56,
11 11 11 01
Tloi d d2 ) Dlla 5017 51 9 52 ) Rlla dO ) d dO
01 01 01 -1 01 401
Ror, sy, 81, 800, Dor s dyty di, d).

Subcase 2.2: If ij = 10, then P; = (s, s3°, Roo,

00 -1 400 400 710 p—1
dy?, di°.d), P21—<s SO,DOO,dZ,dl,dO,RIO,
%" 10 .10 01 01 301
53”0, 81%, 55", D1 ,d) and Ps = (s, s5', Ro1, dg*, d}
01 01 .01 11
dy*, Do1, S07 S17s 50 , T, dy 7d>

Subcase 2.3: If ij = 01, then P; = (s, s3°, Roo,
dy°, d°,d), P, = (5 590, Dool, d dg)l,d> and Py =
<57 8(%07T10ad d2 7D11730 ,51 782 7R11)d0 7d

01 p-1 .01 .01 .01 DL
dy 7R01752 » 8175 507 01ad>-
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Figure 8: Illustrations for Case 2 of Lemma 9.

BF i (n)

BF ai' (N)

BF oi' (N)

ug U,

(a) Subcase 1.1 (b) Subcase 1.2
BFoP(n)  BFg’(n)  BF'(N)  BFgi'(N) BF o’(n) BFgi’(n)  BFgi'(n)  BFgi'(n)
u ud® gL

BF i (n)

(c)

BF (n)

Subcase 1.3

(d) Subcase 1.4

Figure 9: Illustrations for Case 1 of Lemma 10.

BFqi'(n)

BF 61 (n)

BF £°(n)

BFo(n)  BFgi(n) BFgi(n)

s

BF 2P (n)

(a)

BF 01,'10 (n)

Subcase 2.1

BF &t (n)

o,il(n)

S

10
di

(c)

Subcase 2.3

(d) Subcase 2.4

Figure 10: Illustrations for Case 2 of Lemma 10.
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Subcase 2.4: If ij = 11, then P;
d807 d907 dgla DOla 3817 S(lna Sgla
Py = (s, s, Dgg', dS°, dfY, dgt, Ry,
D!, d), and P3 = (s, 53, Tho, di°, d).

00
<5> 85", Roo,

01 11
R017 dO ) d] ) d>7
11 11 11
82 5 81 5 80 B

O

C Proof of Lemma 11

Proof. Without loss of generality, we assume s
(0,0000) and d = (3,aijb) with some i,j,a,b € Zs.
To create the desired 3*-container, we may par-
tition BF(4) into {BFF}(4) | p,q € Zs}. Let
' = (1 + h,apgb) for any p,q € Zy, h €
{0,1,2}. By brute force, we design three dis-
joint paths {PP0, P90 PO} of BFR’S(ZL) joining s
to d)° such that V(P°) U V(PY) U V(P)%) =
V(BFE’S (4)). See Table 5 for the details. Ac-
cordingly, we can write P9 as (s, Wyo, d9°, di°, d3°).
Moreover, PY° and PJ° form a cycle that can
be written as (s, Roo, 0", 9%, 3%, Qoo, d3°, Ago, s), in
which t%° = (h + 1,3100y2) with some yjys #
ab. Let t8? = (1 + h,yipqy2). By Lemma
4, there is a totally scheduled hamiltonian cy-
cle 1 — (189,619,147, Ry, db, 1, 59, Qp, 87) of
BFY}(4) for any pq € Z3 — {00}. Then we list the
3*-container {P;, P», P3} of BF(4) joining s to d in
Table 6. O

D Proof of Lemma 12

Proof. Without loss of generality, we assume that
s =(0,0") and d = (€q,z1ijxs) with some 3 < {4 <
n—1,4,j € Ly, 1 € Z 72, and x5 € ZI*. Then
we partition BF(n) into {BF{™ %, , (1) |p,q € Za}
to create the desired 3*-container by induction on n.

The induction bases depend upon both Lemma 10
and Lemma 11. Next, we assume that the statement
holds for BF(n — 2) with n > 5; that is, there ex-
ists a 3*-container {Pj, Py, P;} of BF(n — 2) join-
ing s = (0,0"2) to d = ({4 — 2,2172) such that
P/ ends up with a level-(¢; — 2) edge and also that
there is a level-(¢4 — 2) vertex ¢ of I(Pj) incident
with a level-(¢4 — 2) edge and a level-(¢4 — 3) edge.
We set t = (¢4 — 2,y1y2) with some y; € Zé‘rz,
Y2 € Zg_éd, and y1ys # z122. Let T' be the subgraph
of BF(n — 2) generated by E(P]) U E(P) U E(P}).
Let d}? (g — 2 + h,z1pgre) and th? (0g —
2 + h,y1pqy2) for any p,q € Zy and h € {0,1,2}.
Since BF,"?,, 1(n) = 48,4 040 o(BF(n — 2))
and T is (¢4 — 2)-designed, 77, ; o 77, _,(T) spans
Bszﬁz,qu(n) and consists of three disjoint paths
{Hy, Hy, H3} between s and dJ°. Suppose H; ends
up with a level-(¢; — 2) edge. Accordingly, we have
Hy, = <537?d—1 °© 7&—2(131,) = WOO’d(2)07d(1)07d80>'
Moreover, Ho and Hj3 form a cycle which can be
written as (s, Roo,t9%,9°,t9%, Qoo, d3°, Ao, s). By
Lemma 4, there is a totally scheduled hamiltonian
cycle CP1 = <tgq7 tqu tgq, Ry, dgq, d;i)qv dgq, Qpqs t;gq> of

BFp?, 1 (n) for pg € Z3 —{00}. Then we also list

15

the 3*-container { Py, P2, P3} of BF(n) joining s to d
in Table 6. O

E Proof of Proposition 1

Proof. Without loss of generality, we assume that
s =(0,0") and d = (0,4jx) with some ¢,j € Zs and
x € 732 We prove this lemma by induction on n.
The induction bases are listed in Table 7. Next, we
suppose that the statement holds for BF(n —2) with
n > 5. Then we partition BF(n) into {BF§Y (n) |
D,q € Za} to create the desired container.

Case 1: Suppose that z = 0"~2. Let s’ = (0,0"?)
and t = (0,2) be two distinct level-0 vertices of
BF(n —2). By Corollary 3, there is a 3*-container
{Q1,Q2,Q3} of BF(n — 2) joining s’ to ¢ such that
Q@3 ends up with a level-0 edge and also that there is a
level-0 vertex u = (0, y) of I(Q3) incident with a level-
0 edge and a level-(n — 3) edge. Let t}? = (h, pgz)
and u}? = (h,pqy) for any p,q € Zy, h € {0,1,2}.
Furthermore, let T' be the 0-designed subgraph of
BF(n — 2) generated by E(Q1) U E(Q2) U E(Q3).
Since BFg(n) = ~{ o 75(BF(n —2)), 7{ o 74(T)
spans BFg"(n) and consists of three disjoint paths
{Pf1,PY? P¥}.  In particular, suppose that P/?
ends up with a level-1 edge. Accordingly, P}?
and PY? form a cycle containing uf?, uf?, and ub?.
By Lemma 4, there is a totally scheduled hamil-
tonian cycle CP? = (Y1, 57 R,,, th?, t17) or OP1 =
(Ui, ub?, Tpg, to?, ul?) of BEE(n) for any p,q € Zs.
By Lemma 7, there is a hamiltonian cycle HP? =
(B B, Wi ) of BRI (n) — {657, 07, 657},

Subcase 1.1: Assume that ij = 10. Let A =

(90,83), (a1, 1), (231,10), (uf,uf?), (uBl,ul),
(ugovey (o)) and et B = A5G,
(Uo yult), (ui” uy’), (Uo sur), (t1%,37), (ugt,uy'),

(t11,t31)}. Then the subgraph generated by (E(v) o
2(I)) U (0 0 73(1)) U B(H) U E(CY) U A) — B
forms a 3*-container. See Figure 12(a) for illustra-
tion.

Subcase 1.2: Assume that ij = 01. Let A =

{90, 40%), (3%, 1Y), (to",t9), (s uft), (ug®,ui®),
(u(l)oau(l)o)v (u(l)ovugl)} and let B = {(t(l)ovtgo)a
(80 ) 00), 00, 1), (6, 1), (o1 )

(t31,ti1)}. Then the subgraph generated by (E(v) o
28(1) U E(1} 049(T) U B(H'0) U E(CT) U A) — B
forms a 3*-container. See Figure 12(b) for illustra-
tion.

Subcase 1.3: Assume that ¢j = 11. Let
A00: 10{(t(1)07115%1)711(7581’%%1)710(1;80";40(1)1)711 (g, ),
(u?”, ug )7o§u200’ uy )705%06“1 ), o(oul XS )} 1aond1})et
B 0: g(tl 752 )70 (UO , Uy )7 (u117u21 )a (UO y Uy )a
(u% au% )7 (u117u21)a (t%lvtél)a (u% 7“21)}' Then the

subgraph generated by (E(v{04(T))UE(yi o~ (T))U
E(HYYUE(O®)U A) — B forms a 3*-container. See
Figure 12(c).

Case 2: Suppose that = # 0" 2. We distinguish
the following subcases.



Table 5: Sets of three disjoint paths of BFl0 5 (4). The vertices tJ°, t9°, and t3° are marked by star symbols.

w Sets of three disjoint paths {P{JU PO, POU} from s to d30
a3 = (1,0000)  PPY = ({0, 0000), (3,0001), (2, 0001), (1,0001), (0, 1001), (3, 1001), (2, 1001), (1, 1001), (0, 0001}, (3, 0000), (2, 0000), (1, 0000))
PO = ((0,0000), (1, 0000))
Pgm = ((0, 0000), (1, 1000)*, (2, 1000)*, (3, 1000)*, (0, 1000), (1, 0000))
a3 = (1, 1000) PY0 = ({0, 0000), (3,0001), (2,0001), (1, 0001}, (0, 1001), (3, 1000), (2, 1000}, (1, 1000))
({0, 0000), (1, 1000))
PO = ((0,0000), (1,0000), (2,0000), (3,0000), (0,0001), (1, 1001)*, (2, 1001)*, (3, 1001)*, (0, 1000), (1, 1000))
a8 = (1, 0001) PY0 = ((0,0000), (3,0001), (2,0001), (1, 0001))
((0,0000), (1, 0000, (2,0000), (3, 0000), (0, 0001}, (1, 0001))
({0, 0000), (1, 1000)*, (2, 1000)*, (3, 1000)*, (0, 1000), (3, 1001), (2, 1001), (1, 1001), (0, 1001), (1, 0001))
({0, 0000), (1, 1000), (2, 1000}, (3, 1000), (0, 1000}, (3, 1001), (2, 1001), (1, 1001))
({0, 0000), (3, 0001), (2,0001), (1, 0001), (0, 1001}, (1, 1001))
({0, 0000), (1, 0000)*, (2, 0000)*, (3, 0000)*, (0, 0001), (1, 1001))

5
S
[T

a8 = (1, 1001) PO

WL
o
1

Table 6: 3*-container {P;, Py, P3} of BF(n) joining s to d for Lemma 11 and for Lemma 12, with reference
to Figure 11.

Case 1: ij = 00 Py = Wy
Py = (s, Ajg % 0. Qoo 190, ¢9L, t(gl)l’Qn cdgt, aft, agt, Ruo gt edt eQt Qg a8t af0, g
P3 = (s, Rog, 190, 10, #10, Ryg, a}¥, a1, a0, @0, 14, tOO 1 Rop,ddt, a9t d)
Case 2: ij = 10 Py = <s,A501,d8 Q Ol,tgo t(lm,t(l)o,Ql_ d)
Py = (s, ROO,tgo,t}O,téo Rlo,d(l)o,d%o, d)
P3 = (s, Wpg.d3°,d{°, ', Qo1 t81,101 9, Ro1,adt, a9t d(l)l,R f2 ,tl 0 L Q. dkt all a4

. A— L 400 1 00 01 =TI 11 411 411 11 11
(s, Agg » dg ,Q%O L 90,91, ¢ Jt ,Qyy »da,dyT, dg an tyh,ty ,to ,Qm, d)

d)

Case 3: ij = 01 Py
Py
Pg <3,R00,t0 ,r{z’,t20 Rig, 4(1,0 a1, 430 Qiq, 3%, 199, 491, Rgy, adt, aQt, d)
Case 4: ij =11 P = (s, A , 490,401, tO ,Qul, d)
Py = (s, Wog, d3°, a0, d%“ Ry, 30,410 +10 @7t a0, al0, ay
Pg = (s, RgQ» 180 too 9%, Ro1,dft, a9t 8%, Qor. ¢9". 11, 3, Ry, agt dit. d)

e
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BF.20,0a(N)  BF,;5,,(N) BFrd 3 fa-1(1) BFrd 204-1(N) BF.5/,.4(N) BFrd saa(M) BF 23, ,,(n) BF ;3 ,(N)
o

(c) Case 3 (d) Case 4

Figure 11: Illustrations for Lemma 12 (also for Lemma 11 when ¢4 = 3).

Table 7: 3*-containers of BF(3) as induction bases.

d 3*-container {Jy, Jo, J3} joining (0, 000) to d

{0, 100) J1 = ({0, 000), (1, 100y, (2, 110), (0, 111y, (1, 111), (2, 111y, (0, 110), (1, 110y, (2, 100), (0, 100}y
({0, 000}, (2, 000), (1,010}, (0, 010), (2, 011), (1, 011), (0, 011), (2, 010), (1, 000), (0, 100))
({0, 000), (2, 001), (1, 001), (0, 001), (1, 101), (0, 101), (2, 101), (0, 100))

({0, 000y, (1, 100y, (2, 100y, (0, 100y, (1, 000y, (2, 010y, (0, 010y))

{0, 010) J1

({0, 000), (2, 000), (1,010), (0, 110), (2, 110), (1, 110), (0, 010))
J3 = ((0,000), (2,001), (1,001), (0,001), (1,101), (0, 101), (2, 101), (1, 111), (2, 111), (0, 111), (1, 011), (0, 011), (2, 011), (0, 010))
(0, 110) J1 = ({0, 000), (L, 100), (0, 100), (2, 101), (1, 101), (0, 101), (2, 100), (1, 110), (2, 110), (0, L10))
Jo = ({0, 000), (2,000), (1,000, (2,010}, (0, 010), (1, 010), (0, 110))
J3 = ({0, 000), (2,001), (0,001, (1,001}, (2,011), (1,011),(0,011), (1,111), (0, 111), (2, 111), (0, 110))

o
M
L 1 T T

{0, 001) J1 = ((0, 000), (1, 000), (0, 100), (1, 100), (2, 110), (0, 111), (1,011), (2, 011y, (0, 011), (1, 111}, (2, 101), (I, 101y, (2, 111), (0, 110), (1, 010),

(2,010), (0,010), (1, 110), (2, 100), (0, 101), (1, 001), (0, 001))

Jo = ((0,000), (2, 000), (0,001))
J3 = ({0, 000), (2,001), (0,001))
(0, 101) J1 = ({0, 000), (1, 100), (0, 100), (2, 100), (0, 101))
Jg = ({0, 000), (2, 001), (0,001), (1,001), (0, 101))
J3 = ({0, 000), (2, 000), (1, 000), (2, 010), (1,010), (0, 110), (2, 110), (1, 110), (0, 010), (2, 011), (0, 011), (1, 011), (0, 111), (1,111), (2, 111),

(1,101), (2,101), (0, 101))
({0, 000), (1, 100), (2, 100), (0, 100), (1, 000), (2, 010), (0, O11))
({0, 000y, (2, 000), (0,001}, (1,101, (2, 101), (0, 101, (1,001), (2, 011}, (0, 011))
({0, 000), (2,001), (1,011), {0, 111), (2, 110, (1, 110, (0, 010), (1, 010), (0, 110), (2, 111}, (1, 111), (0, 011))
((0, 000), (1, 100), (0, 100), (2, 100), (1, 110), (0, 110), (2, 110), (O, 111))

{0,011y 71

{0, 111) J1

.\,
o
[

Jg = ({0, 000), (2,000), (1,000), (2,010), (1,010), (0, 010), {2, 011), (0, 011), (1, 111}, (2, 101), (0, 101), (1, 001), (0, 001), (1,101}, (2, 111},
(0, 111))
J3 = ((0,000), (2,001), (1,011), (0, 111))
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Figure 12: Illustrations for Proposition 1.

Subcase 2.1: If ij = 00, d = (0,00z). By induc-
tion hypothesis, there is a 3*-container {P;, Py, P3}
of BF(n — 2) joining s = (0,0""2) to d =
(0,z). Let T be the subgraph of BF(n — 2) gen-
erated by E(P;) U E(P2) U E(P;). By Lemma
4, there is a totally scheduled hamiltonian cycle
CP1 = (s§1, 80, 8 Ry, s07) of BFé’,’lq(n) for any
pg € Z3 —{00}. Let A = {(s,51°), (51°,83"),
(s(ljlvs(ln)a (88178%1)7 (3%1’850)7 (5(1)073(1)0)} and B =
(5, 500), (580, s10),” (51000, (87 sb0), (5B, 1),
(si1,s31)}.  Then the subgraph Q generated by
(E( 0 58(T) U E(C10) UE(CY) U B(CT) U 4) —
B forms a 3-container of BF(n) between s and d
such that each of {s,d} is incident with only one
level-0 edge. See Figure 12(d). By Lemma 2,
V(BF(n)) - V(Q) = V(BFYY(n) - V(5! 0 1(T)).
Hence, by Lemma 3, there is a 3*-container of BF(n)
between s and d with the desired property.

Subcase 2.2: Suppose that ij # 00. By Lemma 9,
there exists a 3*-container { Py, P», Ps} of BF (n — 2)
joining s’ = (0,0"72) to d’ = (0, ) such that only
Py begins with a level-(n — 3) edge. By Corollary
3, there exists another 3*-container {Q1,Q2,Q3} of
BF(n—2) joining s’ to d’ such that only @; ends up
with a level-(n — 3) edge. Besides, (I(P2) U I(P3)) N
(I(Q2)UI(Q3)) contains at least one level-0 vertex u
incident with a level-0 edge and a level-(n — 3) edge.
We set u = (0,y) with some y € Z572 — {072, z}
and let si? = (h,pq0"~2), u}? = (h,pqy), and d}? =
(h,pqzx) for any p,q € Zs,h € {0,1,2}. Suppose I'y

is the subgraph of BF(n — 2) generated by E(Q1) U
E(Q2) U E(Q3). Since I'y is O-designed, Y o 40(T'1)
spans BFé]”l0 (n). Similarly, let Ty be the subgraph
of BF(n — 2) generated by E(P1) U E(P2) U E(Ps).
Then 71 074 (T'2) spans BFy{(n). By Lemma 5, there
is a hamiltonian path (d9!, Tp1, s§%) of BF(?”l1 (n). By
Corollary 2, there is a hamiltonian path (d{°, Ty, s1%)
of BFOI”l0 (n). By Lemma 7, there is a hamiltonian
cycle Hyp = (udt, Wip,udt, uit, ull) of BFolll(n) -
{so" 1" 3"}

Subcase 2.2.1: Assume that ij = 10. Let A =
{90, d9h), (597, 581, (531, 510), (ul®, ul?), (uf?, ul0),
(u%oau%1)7 (u%lauéo)} and B = {(d(l)ov d(2)0)’ (u807u(1)0)’
(51% 5%, (ug”,ui®), (ui%uy), (ui',u')}. Then a
3*-container of BF'(n) can be formed from the sub-
graph generated by (E(77 070(I'1))UE (77 075(I'2))U
E(To1)UE(H11)UA) — B. See Figure 12(e) for illus-
tration.

Subcase 2.2.2: Assume that ij = 01. Let A =
{99, d30), (519, 581, (sd), 501, (ul®, ), (ul, ),
(u%lau81)7 (U?O’ugl)} and B = {(dtl)ov dgo)a (u?()?ugo)v
(00 01), (a0, (a1, u31), (udt,udD)}. Then
3*-container of BF'(n) can be formed from the sub-
graph generated by (E(7098(T'1)) U E(y} 098(I'))U
E(Ty0)UE(Hy1)UA) — B. See Figure 12(f) for illus-
tration.

Subcase 2.2.3: Assume that ij = 11. By
Lemma 4, there is a totally scheduled hamiltonian
cycle 00 = (ul®, D1g, ud® ul® ul®) of BFoly’lo(n). By
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Lemma 8, there is a hamiltonian path P of BF'(n—2)
joining s’ = (0,0"2) to d’ = (0,z) such that P not
only begins with a level-(n — 3) edge but also ends
up with a level-0 edge. Obviously, 71 o 7J(P) joins

91 to g1, Let A= {(d2,d31), (37, s11), (uf?, ul0),

() . () and 5 ()
(uO , Ul )7 (uo , Ug )7 (ul , U ), (51 ) 82 )7 (ul , Ug )}

Then the subgraph  generated by ( E(7 o 49(T1))
U By} on4(T2)) U E(O®) UE(7 043(P)) U A ) — B
forms a 3-container of BF(n) between s and d such
that each of {s,d} is incident with only one level-0
edge. See Figure 12(g) for illustration. By Lemma 2,
V(BF(n) - V(Q) = V(BFY} (n)) — V(3} 0 1(P)).
Hence, by Lemma 3, there is a 3*-container of BF(n)

between s and d with the desired property. O
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