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Abstract 

With the widespread popularity of 
portable devices, such as cellular phones and 
personal digital assistants (PDAs), in these 
days, people rely on the mobile technology 
more and more. To satisfy the low power, 
low cost, and high performance 
requirements for consumer electronics, the 
video encoders implemented by the VLSI 
architectures are much more suitable than 
the firmware or the software solutions. 
However, to integrate these ICs into a 
system is not easy, and these frameworks 
usually support dedicated frame size, frame 
rate and output bitrate, which will limit the 
utilities of the products. In order to 
overcome these drawbacks, a register-based 
platform independent MPEG-4 co-processor 
(RPIMC) is proposed in this paper, and it 
can transfer and receive the image data in all 
kinds of bus matrices with the suitable 
wrappers for being easily integrated into 
other platforms. RPIMC, which can be 
programmable to manipulate up to HD 
resolution and 30 frames per second, with 
204K gates and 6,462 bytes of RAM is 
implemented, and it can adjust the data types 
of the input and the output streams by 
modifying the relative registers.  

Index Terms：MPEG-4, VLSI, system. 

I. Introduction 

Recently, the algorithms and the 
architectures for processing video and audio 
signals are improved significantly. They are 
employed in various applications, such as 

digital TV, video conferencing and mobile 
multimedia systems. The markets for mobile 
electronics equipments, like portable PCs, 
cellular phones, and personal digital 
assistants (PDAs), are currently growing 
rapidly. Moreover, the higher bandwidth for 
wireless telecommunications now is 
provided for transferring moving pictures in 
addition to speech and data. Therefore, 
multimedia processing will be an essential 
function in such mobile-equipment 
applications. 

The improved coding efficiency and the 
advanced features of MPEG-4 come with 
much higher computational complexity 
compared with previous standards. Several 
MPEG-4 video encoders have been reported. 
To satisfy rich functionalities of the future 
multimedia, some are implemented in 
firmware based on the low power DSP 
platform [1]. They have the highest 
flexibility but the cost of the hardware is too 
expensive. Moreover, the low power DSPs 
are usually operate at lower frequency, so 
the image quality will be degraded due to 
the fast algorithms of motion estimation 
(ME) and discrete cosine transform/ inverse 
discrete cosine transform (DCT/ IDCT). 
Therefore, the dedicated hardware 
methodologies are developed to achieve low 
power and low area cost, and it can encode 
the MPEG-4 video for CIF format at 15 
frames per second (FPS) at 1.5V supply with 
700K gates. However, lack of potential for 
future modification of advanced algorithms 
and higher design effort are the 
disadvantages. 

Hence, in order to compromise the 
performance and flexibility, the hybrid 
software/ hardware co-design is adopted 
[3]-[5]. A RISC-based platform with 
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hardware accelerators is presented to 
implement MPEG-4 video encoding 
algorithms [3]. The optimization in both 
algorithm and architecture level is applied. 
However, the operating frequency at 40 
MHz is too high for portable devices. The 
architectures which are developed for 
reducing the power consumption usually 
provide lower encoding complexities. 
Another design with the same encoding 
complexity as [2] based on an ARM core 
and AMBA is introduced, but its power 
consumption is not suitable for consumer 
electronics [4]. Except for the single purpose 
video encoders, an multi-functionality 
videophone LSI is fabricated utilizing a 
0.25-um CMOS triple-well quad-metal 
technology [5]. Three 16-bit 
multimedia-extended RISC processors, 
dedicated MPEG-4 hardware accelerators, 
and a 16-Mb embedded DRAM are 
integrated. Although it has reasonable chip 
area and power consumption, it can only 
encode the MPEG-4 video for QCIF format 
at 15 FPS.  

These designs can be separated into 
two parts. One is the architectures that only 
can perform video encoding [2]-[4], and the 
other part is the frameworks which have 
more functionalities like videophone [5]. 
Generally speaking, the single purpose 
encoders often provide better coding 
performance in image size and frame rate. 
Moreover, the chip area and the power 
consumption are also less than that of the 
multi-purpose one. Therefore, to integrate 
the MPEG-4 encoder into a system is still a 
critical issue. Besides, these designs are 
developed only for their platforms, and the 
encoder parameters such as image resolution, 
output bitrate and input frame rate are fixed. 
Furthermore, to integrate these frameworks 
into other platform is difficult because the 
considerations, like the timing of fetching 
the image data, and the output packets 
formats of the encoded bitstream, are 
usually not compatible with other platforms. 
When the manufacturers own their RISC 
and relative peripherals, such as LCD, 
memory card, and USB controllers, all they 

need is an MPEG-4 encoder which can 
easily integrate into their system-on-chip 
(SoC) design for various applications. 
However, the dedicated and limited 
functionalities of these encoders usually 
force the producers to establish their 
products by dual-chip. One is their RISC 
and relative peripheral controllers, and the 
other is an MPEG-4 encoder. The overall 
cost and the applications will be restricted.  

In this paper, a register-based platform 
independent MPEG-4 co-processor (RPIMC) 
is proposed. The main ideas of this paper are 
to provide a programmable MPEG-4 
encoder which can easily integrated into any 
platforms. To satisfy the demand for various 
applications, RPIMC can modify the input 
frame size, input frame rate, and output 
bitrate by adjusting the relative registers. 
The main controller of RPIMC will 
automatically calculate the internal loops of 
the pipelines for encoding, and will read the 
data in the corresponding memory with the 
correct image resolution based on these 
registers, respectively. Therefore, the 
manufacturers who need MPEG-4 encoders 
can easily integrate RPIMC into their 
platforms, and they can use RPIMC for 
various applications with proper register 
settings. Not only the innovative features are 
developed, but also the algorithms which 
can fit the requirements are adopted. 
According to the computational complexity 
analysis report in [6] and [7], the dominating 
computation-intensive tasks in MPEG-4 
core profile coding are motion estimation 
(ME) and shape coding, which together 
contribute more than 90% of the overall 
complexity. For simple profile without shape 
coding tools, ME becomes the most 
significant one. Hence, an efficient 
hierarchical motion estimation algorithm 
(HMEA) is applied [8]. HMEA using 
multi-resolution frames to reduce the 
computational complexity and excellent 
estimation performance is ensured using an 
averaging filter to down-sample the original 
image. When the image resolution is larger, 
HMEA can reduce more sum of absolute 
difference (SAD) operations. 
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The main contribution of this paper is 
to design a high quality programmable video 
encoder that is suitable for every platform 
and every purpose with small gate counts to 
solve the changeless disadvantage of normal 
VLSI frameworks [2]-[5]. 

The rest of this paper is organized as 
follows. Section II shows the architecture of 
RPIMC. Section III presents the efficient 
motion unit (MU) framework. Section IV 
depicts the results of implementation and 
Section V draws conclusions. 

II. The Architecture of RPIMC 

Figure 1 shows the overall architecture 
of RPIMC, and it mainly contains four parts, 
controller, MU, texture coding engine (TCE), 
and bitstream generator (BG). The controller 
will calculate the required inter loops for 
different input frame resolutions, and it is 
also responsible for macro block (MB) level 
hardware scheduling, and coding mode 
decision. Other hardware accelerators 
improve the system performance by parallel 
processing according to the parallelism of 
algorithms. MU includes ME and motion 
compensation (MC), and can carries out ME 
with the search range from -16.0 to +15.5 
pixel unit. Moreover, it interpolates pixels in 
reference frames into compensated MBs 
with the specific motion vector (MV). DCT, 
IDCT, quantization (Q), inverse Q (IQ), and 
AC/DC prediction on texture pixels in MBs 
are integrated in TCE. BG produces bitstrem 
headers, motion information, and texture 
information in the format of variable length 
codes. The hardware pipeline scheduling 
and the register bank will be described 
below. 

 
Fig. 1 The overall architecture of RPIMC 

A. The hardware pipeline scheduling 

After analyzing the clock cycles needed 
for processing one macro block, three stages 
pipeline scheduling, which is divided by 
MU, TCE and BG, is applied. As shown in 
Fig. 2, RPIMC will fetch the input frame 
MB by MB, and the pipeline processing can 
be separated into the intra and the inter 
modes since MU is not activated in the latter 
mode. The duration for processing one MB 
is called one time slot (TS), which is the 
period between two vertical dotted lines, and 
MUi, TCEi, and BGi denote the operation of 
the i-th MB of the image in the 
corresponding hardware accelerators.  

In the first TS of the intra mode, only 
TCE is activated, and BG is in the suspend 
mode in order to reduce the power 
consumption. After TCE processing the first 
MB, the texture information, which are the 
quantization coefficients, will be input into 
BG, and TCE will start to manipulate the 
second MB in the second TS. In addition to 
the scheduling of the accelerators, the usage 
of the bus matrix is also an important issue. 
In order to maximize the performance, the 
occupation of the bus matrix of each 
component should be separated as possible 
as they can. In RPIMC, the image data is 
input in the format of YUV420, and one 

1616×  MB denotes four 88×  Y blocks, 
one 88×  U block, and one 88×  V block. 
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According to the design of TCE, these six 
blocks are manipulated and output in one TS 
with the same interval, TCET , which is 
shown in Fig. 2.  

The first two output data of TCE will 
be stored into the local buffer in order to let 
the BG to write out the bitstream since the 
duration of BG occupying the bus matrix, 

BGT , is around TCET×2 . After the fourth 
block producing from TCE, the bus matrix 
will be free for a while, and the controller 
will start to fetch the next MB from the 
external memory at this moment. When all 
MBs of the image are computed, the 
operation mode will be switched from the 
intra mode to the inter mode. 

As shown in Fig. 3, there are three 
pipeline stages in the inter mode. In the first 
TS, only MU is enabled and processes the 
first MB. After that, TCE will compute the 
motion materials while the second MB is in 
MU, and BG will be activated to read the 
texture information at the third TS. In this 
mode, BG will still occupy the bus matrix at 
the beginning of each TS, and two FIFO 
buffers are adopted to store the temporal 
reconstructed MBs from MU since the bus is 
busy in the first half of TS. The controller 
will manage the usage of the bus matrix 
after BG finished, and ME will have higher 
priority than MC. If ME wants to fetch the 
next MB, MC will put the reconstructed MB 
into FIFO. Otherwise, MC will output the 
data to the external memory when ME is not 
using the bus. In this way, the pipeline 
scheduling and the usage of the bus matrix 
will be efficient to increase the overall 
processing speed. TS of each MB is 1,200 
cycles in average, depending on the cycle 
time of BG occupying the bus. 

If the latency of external memory is 5 
cycles at the operating frequency of 20-MHz, 
which is 250 ns per word, RPIMC will 
encode the MPEG-4 videos for CIF format 
at 21-MHz for real-time applications. 

 

 

Fig. 2 The intra MB scheduling 

 

 

Fig. 3 The inter MB scheduling 

B. The register bank 

The design of the register bank makes 
RPIMC independent from the platforms, and 
it combines the control registers (CRs) and 
the status registers (SRs). The main feature 
of RPIMC is that it can program several 
system parameters to satisfy various 
applications, such as mobile video phones, 
digital video recorders, and high 
performance surveillance systems. In these 
utilizations, the required frame resolution, 
FPS, the output bitrate and the power 
consumption are different from each other. 
The manufacturers who have their own 
platforms can integrate RPIMC easily by 
setting the corresponding CRs, and RPIMC 
will start to encode the video with the format 
they want. The working flow of RPIMC is 
shown in Fig. 4, and CRs and SRs with their 
definitions are listed in Table 1.  
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Fig. 4 The flow chart of the controller 

To achieve the platform independent 
design, the controller has to verify the value 
of CRs in the initial state. At the beginning, 
it will fetch the values in the register bank, 
and check if the start memory address of the 
current frame, the reference frame, and the 
output data are overlapped by adding them 
with the size of each input picture which can 
be obtained in CRs. Since RPIMC can allow 
these input data be arranged in the 
discontinuous memory block to make the 
design of the platforms flexibly and 
efficiently, if one address of them is placed 
within the manipulated area of the others, 
RPIMC will not be ready and stays in the 
idle state. The decision equation is (1), 
where ( )xAdd , sizeimg , and S  represents 

the start place of ( )x , the size of the image, 
and the set of memory address of the current 
frame, the reference frame, and the output 
data, respectively.  
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Furthermore, because the encoding 
cycles for one 1616×  block of RPIMC are 
fixed, the controller can estimate the 
computing ability according to the input 
operating frequency in CRs. If the 
requirement of the image resolution and the 
frame rate exceed the load of RPIMC, 
illustrated in (2), where blockC  denotes the 
required cycles for encoding one block, the 
co-processor will not be enabled, too. On the 
contrary, while it has free time to wait for 
the image data, the controller will 
automatically gated the input clock and 
rewrite the SRs to save the power.  

frequencyinputfps
img

C size
block  

1616
f×

×
× , (2) 

If the initialization procedure is passed 
with no errors, the controller will calculate 
the number of loops for encoding a frame by 
the desired image resolution. Then, the 
image data will be input one block by one 
block at the address assigned in the CRs, 
and the controller will determine whether 
the input block is intra or inter one. If it is an 
intra one, it will be sent to TCE, or else to 
MU. When the loops are finished, RPIMC 
will be back to the idle state to reduce the 
power consumption. In order to make the 
host easier to integrate with RPIMC, it will 
reflect the encoder conditions to the host 
through SRs. The mode of the encoder (intra 
MB or inter MB), the current working status 
(idle, enable, finish, or sleep), and the 
bitstream size of the encoded frame will be 
stored in SRs by the controller of RPIMC.  
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Table 1 The register banks 
Types Name Description 

W The width of the input image 
H The height of the input image 

I_Size The size of the input image 
I_FPS The input frame rate 
Bitrate The output bit rate 
Clock The input operating frequency 
MEM1 The start address of MEM1 for current frame 
MEM2 The start address of MEM2 for reconstructed frame 
O_FPS The output frame rate 

CR 

Out The start address of output bitstream 
Status The current state of RPIMC (Idle, Enable, Sleep or Finish) 
O_Size The size of the output bitstream SR 
Mode The current operating mode of RPIMC (Intra / Inter) 

 

C. Memory organization 

RPIMC requires the off-chip memory 
(OFFM) and several on-chip memory (ONM) 
blocks to complete the whole MPEG-4 
video encoding procedure. OFFM contains 
source frames and reconstructed frames, and 
ONM is used as local buffers to reduce the 
bus bandwidth. In order to increase the 
speed of TCE for fitting the pipeline 
scheduling, the transformed coefficients for 
AC/DC prediction and the transpose 
memory for DCT/IDCT are integrated into 
ONM. Besides, for the data fetching 
performance and the information reuse 
efficiency, ONM  allocates the space for 
storing the current MB and the search area 
for MU, and it also includes the input and 
output buffer for both TE and BG, 
respectively. 

The input video source and the 
reference frames are stored in OFFM, and 
the direct memory access (DMA) plays an 
important role to control the memory 
interface to read data from or write them out 
to OFFM in a specified sequence after being 
initialized by the controller. In the OFFM 
design, two main parts, MEM1 and MEM2 

are used to store two frames and they act as 
the ping-pong buffer to increase the 
encoding speed. The operations for MEM1 
and MEM2 can be separated into two modes. 
First, in the intra frame mode, the input 
images are always stored in MEM1, and the 
reconstructed frame produced from TCE 
will be saved in MEM2. Second, in the inter 
frame mode, since the current frame will be 
the reference frame in the next encoding 
loop, these two parts will switching their 
status mutually until the next intra frame 
mode, and the scheme is illustrated in Fig. 5. 

 

Fig. 5 The state of the external memory 
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III. The Efficient HEMA 

HMEA uses multi-resolution frames to 
reduce the computational complexity, and 
excellent estimation performance is ensured 
using an averaging filter to down-sample the 
original image. At the smallest resolution, 
the least two motion vector candidates are 
selected using a full-search block matching 
algorithm (FSBMA). At the middle level, 
these two candidate motion vectors are 
employed as the center points for small 
range local searches. Then, at the original 
resolution, the final motion vector is 
obtained by performing a local search 
around the single candidate from the middle 
level. HMEA exhibits regular data flow and 
is suitable for hardware implementation. An 
efficient VLSI architecture that includes an 
averaging filter to down-sample the image 
and two 2-dimensional semi-systolic 
processing element arrays to determine the 
sum of absolute difference (SAD) in 
pipeline is also presented. Simulation results 
indicate that HMEA is more area-efficient 
and faster than many full-search and 
multi-resolution architectures while 
maintaining high video quality. HMEA can 
be divided into two parts. One is the 
averaging filter for down-sampling, and the 
other is the MV search procedure. The 
complete algorithm is described as below. 

A. Hierarchical Frame Structure 

The HMEA comprises three resolution 
levels, from zero to two. Level 0 is the top 
level, and the level 2 is the lowest. 
Numerous ways are available to 
down-sample an image. Based on the test 
results and the easy VLSI implementation, 
the averaging filter is selected. Moreover, 
the downsampling elements can be re-used 
for interpolating the half accuracy pixels 
during the half-pel search. For the k-th input 
frame, ( ) ( )⋅2

kI , the upper level images are 
computed by executing the following 
down-sampling: 

( ) ( ) ( ) ( )∑∑
+
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=
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where ( )( )jiI l
k ,1−  represents the value at 

position ( )ji,  of the k-th frame at level 
1−l .  

The test results presented in Table 2 
indicates that the estimation performance of 
adopting averaging filter is significantly 
exceeds that of the method that considers 
only the left-top pixel and the 
two-dimensional discrete wavelet transform 
(2D-DWT), and can be used to design an 
efficient down-sampling hardware 
architecture. Antonini 9/7 DWT requires 
higher computational power, but it provides 
poor quality in the downsampling stage of 
HMEA. Moreover, if the scaling factor of 
Haar DWT is replaced by 1/2, the results are 
exactly the same as the averaging filter, and 
can get rid of the dynamic range problem. 
The reason of the averaging filter 
outperforms the Haar DWT is that 21  is 
chosen as its scaling factor, and this will 
cause the inaccuracy of the values of 
downsampled pixels. Considering both the 
coding performance and the hardware 
design, the averaging filter is chosen to 
down-sample the image in HMEA. 
Therefore, the averaging filter is chosen to 
down-sample the image. 

The number of pixels at the next lower 
level is reduced to one quarter the number at 
the upper level. Figure 6 shows the 
hierarchical frame structure. The MB size 
changes from 16 16× , through 8 8× , to 
4 4×  at levels 2, 1 and 0, respectively. 

In block matching algorithm, SAD is 
an important procedure, and its value at 
level l can be defined as 
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where l is the level number and l=0, 1, 2. 
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Table 2    The comparison of the video quality between various downsampling methods for 
left-top, Haar’s DWT, Atonini’s 9/7 DWT, and the averaging filter in dB. 

Left-top Antonini 9/7 DWT Haar DWT Averaging filter Video 
Sequence PSNR PSNR PSNR PSNR 

News 32.79 33.84 35.42 35.45 
Flower 
garden 

21.43 24.23 26.55 26.62 

Foreman 30.53 28.74 33.14 33.18 
Table tennis 31.02 32.17 33.05 33.07 

Stefan 23.81 22.35 25.67 25.82 
Mobile 23.07 21.42 24.49 24.53 

 

 

Fig. 6 The hierarchical frame structure 

In the above equation, the 
computational complexity of the matching 
process can be enormously reduced. At level 
1, the computational complexity is only one 
quarter that on level 2, and that at level 0 is 
one quarter that at level 1. 

B. Framework of HMEA 

The overall searching process can be 
separated into three levels. As presented in 
Fig. 6, when level 2 receives an input image 

( ) ( )⋅2
kI , the image will be down-sampled to  
( ) ( )⋅1
kI  and ( ) ( )⋅0

kI , where the resolutions of 
( ) ( )⋅1
kI  and ( ) ( )⋅0

kI  are one quarter and one 
sixteenth of that of ( ) ( )⋅2

kI , respectively. Let 
the entire search range at level 2, or ( )2Ω , be 
[ ]1, −− ww . After the original image ( ) ( )⋅2

kI  
has been down-sampled, the search 
procedure, illustrated in Fig. 7, begins. Let 

( )lCur , ( )lPre , ( )l
kSA  and ( )l

nMV  denote 
the current MB, the previous frame search 
area, the k-th search area and the n-th MV 
candidate at level l, respectively. The MV 

searching process is completed when MBMV , 
defined in (5), has been determined.  

( ) ( ) ( )2
0

1
0

0 24 MVMVMVMV iMB +×+×= , (5) 

C. Half-pel Search 

After MBMV  is manipulated, the 
half-pel search is started. Therefore, the 
neighboring half accuracy pixels of  the 

MBMV  have to be calculated, and a total of 
833 pixels and 8 SADs are necessary. The 
complexity of the half-pel search, halfC  is 
defined as (6), and it is combined with the 
pixels and the SAD operations. 

( ) fhalf RHWNMC ×
×

××+×= 216
8833 , (6) 

where M , N  and fR  are the number of 
operations required to compute a half 
accuracy pixel, the SAD operation, and the 
frame rate, respectively. Fortunately, the 
downsampling stage of HMEA has already 
calculated 144 pixels for half-pel search so 
the complexity of half-pel search for HMEA, 

HMEAhalfC _ , can be reduced as (7). 

( ) fHMEAhalf RHWNMC ×
×

××+×= 2_ 16
8689 , (7) 
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Fig. 7 The hierarchical search procedure 

D. Complexity Analysis 

The overall search procedure includes 
the downsamping stage, downsampleC , the 
integer-pel search, and the half-pel search, 
and downsampleC  is defined as (8). The half 

accuracy pixels only need one addition to 
manipulate where the pre-processed pixels 
for HMEA requires three of them, and the 
shift operation can be reduced by reading 
the higher bits of the pixel. Therefore, the 
cycles for downsampling a pixel are three 
times to them for the half accuracy pixels. 
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During the overall search procedure, the 
search complexity is described as (9): 
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where ( )lC  represents the search 
complexity in level l. In the case of FSBMA, 
computational complexity is given by (10). 

( ) halffFSBMA CRHWNwC +×
×

×××+= 2
22

16
1612 , (10) 

The SAD operation for a pixel, which 
is described in (4), needs 256 additions, and 
256 subtractions, and the manipulation for a 
half accuracy pixel only requires one 
additions. Therefore, the relationship 
between M , and N  can be illustrated as 
(11). 

256256 +
=

NM ,        (11) 

From the equations (9) to (13), they 
demonstrate that the computational 
complexity of HMEA will be only 3.9% and 
1.3% of that of it of FSBMA for w of 16 and 
32, respectively. 

E. The comparison between the ME 
architectures 

The MPEG test video sequences: 
“News,＂ “Foreman,＂ “Flower 
garden,＂ “Table tennis,＂ “Stefan,＂ 
and “Mobile＂ are used to evaluate the 
performance of HMEA. 
All the sequences consist of 300 frames; the 
frame rate is 30 FPS, and the image size is 
CIF. The search range is defined as 
[ ]1, −− ww , where w=16. The PSNR is used 
for the measurement of performance, and 
the PSNR is defined as (12). 
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where ( )k̂I ⋅  is the k-th motion 
compensated image, respectively. 

The performance of HMEA is 
compared to that of two well-known 
algorithms: FSBMA and n-step search (nSS) 
[9], and two MMEA algorithms, MRMC-m 
[10] and MRMCS [11]. nSS is a general 
version of the 3SS to cover the increased 
search ranges ( =n 3, 4, 5 for =w 8, 16, 32, 
respectively). MRMC-m is a MMEA based 
on multiple candidates, and it has 
m-candidates at each resolution. MRMCS 
uses three MV candidates at level 1, and two 
of the MV candidates that are obtained on 
the basis of minimum matching error at 
level 0, and the other one is based on the 
spatial MV correlation. MRMC-m and 
MRMCS are both using left-top method for 
downsampling the images, and they also 
keep multiple winners at the top level.  

Tables 3 and 4 present the results. Table 
3 describes the complexity of these four 
algorithms in the various search area, and 
Table 4 shows the performance in terms of 
PSNR. According to these tables, HMEA 
provides a prospective PSNR performance 
that is close to that of FSBMA, and a greater 
search range corresponds to a lower 
complexity. Although the averaging filter 
has higher computational complexity than 
the left-top method which MRMCS and 
MRMC-m adopted, the number of the MV 
candidates in level 1 of HMEA is less than 
the other two MMEAs. Therefore, the 
overall complexity of HMEA is smaller than 
MRMCS and MRMC-m. In Table 3, nSS 
exhibits the lowest computational 
complexity with consistency that is proper 
for hardware implementation. However, it 
can be observed that nSS provides the lower 
PSNR especially for the sequences that have 
fast motion. Besides, although MRMC-m 
also needs a consistent computational 
complexity, it contributes the worse PSNR 
than MRMCS and HMEA for similar 
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Table 3 The comparison of the complexity, including half-pel search, between FSBMA, nSS, 
MRMC-4, MRMCS and HMEA in different search ranges. 

Search Range FSBMA nSS MRMC-4 MRMCS HMEA 
8 100 10.05 18.00 17.66 13.53 
16 100 3.22 4.96 4.78 3.91 
32 100 1.02 1.52 1.52 1.32 

Table 4    The PSNR comparisons of various fast-search algorithms in dB. 

Video Sequence HMEA FSBMA 4SS MRMC-4 MRMCS 
News 35.45 35.85 34.83 35.01 35.15 

Flowergarden 26.62 27.22 26.39 26.57 26.71 
Foreman 33.18 33.70 32.15 32.97 33.14 

Table tennis 33.07 34.08 32.16 32.45 33.05 
Stefan 25.82 26.43 25.13 25.41 25.98 
Mobile 24.53 25.18 23.96 24.11 24.65 

 

computational complexity. Meanwhile, the 
PSNR of HMEA is slightly less than 
MRMCS in the video sequences that contain 
high motions since MRMCS applies an MV 
candidate based on spatial correlation in an 
MV field. However, MRMCS needs many 
more cycles to manipulate the MV candidate. 
Based on the computational complexity 
resulted determined by the tests, HMEA is 
the most suitable algorithm for VLSI 
implementation. 

V. Implementation Results 

The hardware architecture of RPIMC, 
as described in Section II, with the efficient 
HMEA [8], illustrated in Section III, is 
successfully implemented. The VLSI 
circuits were described in VHDL and 
synthesized by SYNOPSYS Design 
Analyzer using UMC 0.18um CMOS 
standard cell library. The chip 
implementation results and the performance 
comparison will be depicted in this Section. 

A. The chip implementation results 

The total gate counts of RPIMC are 
204K gates, and it contains 6,462 bytes 
on-chip memory. Since the major features of 
RPIMC are that it is platform-independent 
and is programmable to encode videos with 
different resolutions and frame rate, RPIMC 
usually faces the situation of waiting the 
platforms. Therefore, RPIMC introduce two 
kinds of power saving techniques, sleep 
mode and clock gating. Sleep mode offers 
the greatest power savings to the user, and 
during this mode, RPIMC watches for a 
wake-up event which is asserted by the 
external pin. On the other hand, the clock 
gating can reduce a large percentage of the 
power since the logic activity in RPIMC is 
very high (~90%). Each clock of the blocks 
in RPIMC can be gated by the controller to 
manage the power down mode according to 
the operations. The chip layout and the 
specification are shown in Fig. 11, and Table 
5. When RPIMC is operating at 21 MHz to 
encode the images in CIF at 30 FPS, it 
consumes 262 mW. RPIMC has been 
confirmed that the maximum operating 
frequency of 140 MHz in a typical condition 
by the Shmoo Utility, and it means that 
RPIMC can perform the video compression 
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up to the complexity of 1280x720 (HD) at 
20 FPS which is enough for the usage of any 
consumer electronics and even surveillance 
systems.  

B. The performance comparisons 

The encoding performance of RPIMC 
is compared with the XviD MPEG-4 
software encoder using various test 
sequences provided by MPEG, and the result 
is shown in Table 6. It can be observed that 
the quality of RPIMC is a little less than 
XviD because the data precision of the 
hardware design is not as good as the 
software model, especially in the TCE block. 
However, the quality decrease of RPIMC is 
not easy to be distinguished by the human 
eyes.  

 

Fig. 11 The chip layout 

Table 7 demonstrates the comparison 
between some MPEG-4 video encoders 
proposed before. In [2], it is full dedicated 
hardware video codec design, and it uses 
MVFAST for ME with search range equals 
to -16~+15.5 with extremely low operating 
frequency and power dissipation. However, 
the full dedicated design lacks of flexibility 
for future integration. The platform-based 
designs, including [12] and [3]-[5], are in 
hardware/software co-design fashion with 
performance and flexibility. In [5], it adopts 
3SS for ME with the search range of 
-32~+31.5, and several LSI, such as the 
logic for H.223, the speech DSP, and an 

16-Mb embedded DRAM, are also 
integrated. Although it contains many 
functions, its die size is too large and it can 
only encode the images of QCIF at 15 FPS. 
As for [4] choose a coarse ME with search 
range -8~+7.5, and it contains an ARM 
embedded microprocessor and it consumes 
500 mW to compute the images of CIF at 15 
FPS. In the above designs, the encoding 
complexities are too low, and their gate 
counts are too high for consumer electronics. 
In [3], the cost-efficient video encoder SoC 
consumes 256.8 mW at 40 MHz and 
achieves real-time encoding of CIF at 30 
FPS. All of these designs before only works 
for specific resolution of the input images, 
and are not easy to integrate to other 
platforms. RPIMC with the programmable 
register bank and the efficient HMEA [8] 
which can manipulate various image sizes, 
up to HD, and it is designed to be a 
platform-independent co-processor. In the 
viewpoint of video encoder part, RPIMC has 
the richest functionalities, the highest 
encoding complexity and the lowest cost. 

VI. Conclusions 

This paper has addressed the 
implementation of RPIMC, which can 
encode various format of the input image by 
setting the corresponding register bank, and 
its system-level design. With the 
programmable controller and the efficient 
HMEA, RPIMC can compress the real-time 
video at low operating frequency, 21 MHz, 
for the real-time application for CIF images 
to reduce the power consumption, compared 
with other MPEG-4 chips. The proposed 
architecture is designed to be easily 
integrated into other platforms by modifying 
the wrapper to achieve the 
platform-independent purpose to wider its 
applications.  
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Table 5 The chip specification of RPIMC 

Supported image format YUV 4:2:0 
Supported VOP type I frame & P frame 
Supported image size Programmable, Up to HD (1280 x 720) 
Encoding frame rate Programmable, Up to 30 frames/sec 
Maximum operation frequency 140 MHz 
Voltage 1.8 V 
Power consumption 262 mW @ 21 MHz 
Gate count 204K gates 
On-chip memory 6462 bytes 
ME Algorithm HMEA, 4MV mode, Search range -16.0 to +15.5 

Table 6 The performance comparison between the software model and RPIMC in dB 

Video sequences XviD official version software 
encoder 

RPIMC 

Akiyo 42.38 41.45 
Foreman 30.81 29.92 

Table tennis 31.51 29.66 
Mobile 21.31 20.93 

Flower garden 22.25 21.88 

Table 7 The performance comparison between other MPEG-4 chips and RPIMC 

Designer [2] [3] [4] [5] [12] RPIMC 
Encoding 

Complexity 
CIF, 

15FPS 
CIF, 

30 FPS 
CIF, 

15FPS 
QCIF, 
15 FPS 

CIF, 
30FPS 

Programmable 
Up to HD, 20FPS 

Operating 
Frequency 

(MHz) 
13.5 40 27 60 36 Maximum 140 

Power 
(mW) 

29 256.8 500 240 N/A 262 @ 21 MHz 

Gate Counts 
(K) 

700 278 1,700 
6,800 

(DRAM)
170 204 

Process 
(μ m) 0.18 0.35 0.35 0.25 0.18 0.18 

95-2752-E-009-012-PAE, and Aiming for 
the Top University Plan of the National 
Chiao Tung University and Ministry of 
Education, Taiwan, under Grant 95W803E. 
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