
 1

Platform independent MPEG-4 Co-processor

Bing-Fei Wu
National Chiao Tung University
bwu@cc.nctu.edu.tw

Hsin-Yuan Peng
National Chiao Tung University
sypeng.ece91g@nctu.edu.tw

Abstract

With the widespread popularity of
portable devices, such as cellular phones and
personal digital assistants (PDAs), in these
days, people rely on the mobile technology
more and more. To satisfy the low power,
low cost, and high performance
requirements for consumer electronics, the
video encoders implemented by the VLSI
architectures are much more suitable than
the firmware or the software solutions.
However, to integrate these ICs into a
system is not easy, and these frameworks
usually support dedicated frame size, frame
rate and output bitrate, which will limit the
utilities of the products. In order to
overcome these drawbacks, a register-based
platform independent MPEG-4 co-processor
(RPIMC) is proposed in this paper, and it
can transfer and receive the image data in all
kinds of bus matrices with the suitable
wrappers for being easily integrated into
other platforms. RPIMC, which can be
programmable to manipulate up to HD
resolution and 30 frames per second, with
204K gates and 6,462 bytes of RAM is
implemented, and it can adjust the data types
of the input and the output streams by
modifying the relative registers.

Index Terms：MPEG-4, VLSI, system.

I. Introduction

Recently, the algorithms and the
architectures for processing video and audio
signals are improved significantly. They are
employed in various applications, such as

digital TV, video conferencing and mobile
multimedia systems. The markets for mobile
electronics equipments, like portable PCs,
cellular phones, and personal digital
assistants (PDAs), are currently growing
rapidly. Moreover, the higher bandwidth for
wireless telecommunications now is
provided for transferring moving pictures in
addition to speech and data. Therefore,
multimedia processing will be an essential
function in such mobile-equipment
applications.

The improved coding efficiency and the
advanced features of MPEG-4 come with
much higher computational complexity
compared with previous standards. Several
MPEG-4 video encoders have been reported.
To satisfy rich functionalities of the future
multimedia, some are implemented in
firmware based on the low power DSP
platform [1]. They have the highest
flexibility but the cost of the hardware is too
expensive. Moreover, the low power DSPs
are usually operate at lower frequency, so
the image quality will be degraded due to
the fast algorithms of motion estimation
(ME) and discrete cosine transform/ inverse
discrete cosine transform (DCT/ IDCT).
Therefore, the dedicated hardware
methodologies are developed to achieve low
power and low area cost, and it can encode
the MPEG-4 video for CIF format at 15
frames per second (FPS) at 1.5V supply with
700K gates. However, lack of potential for
future modification of advanced algorithms
and higher design effort are the
disadvantages.

Hence, in order to compromise the
performance and flexibility, the hybrid
software/ hardware co-design is adopted
[3]-[5]. A RISC-based platform with

 2

hardware accelerators is presented to
implement MPEG-4 video encoding
algorithms [3]. The optimization in both
algorithm and architecture level is applied.
However, the operating frequency at 40
MHz is too high for portable devices. The
architectures which are developed for
reducing the power consumption usually
provide lower encoding complexities.
Another design with the same encoding
complexity as [2] based on an ARM core
and AMBA is introduced, but its power
consumption is not suitable for consumer
electronics [4]. Except for the single purpose
video encoders, an multi-functionality
videophone LSI is fabricated utilizing a
0.25-um CMOS triple-well quad-metal
technology [5]. Three 16-bit
multimedia-extended RISC processors,
dedicated MPEG-4 hardware accelerators,
and a 16-Mb embedded DRAM are
integrated. Although it has reasonable chip
area and power consumption, it can only
encode the MPEG-4 video for QCIF format
at 15 FPS.

These designs can be separated into
two parts. One is the architectures that only
can perform video encoding [2]-[4], and the
other part is the frameworks which have
more functionalities like videophone [5].
Generally speaking, the single purpose
encoders often provide better coding
performance in image size and frame rate.
Moreover, the chip area and the power
consumption are also less than that of the
multi-purpose one. Therefore, to integrate
the MPEG-4 encoder into a system is still a
critical issue. Besides, these designs are
developed only for their platforms, and the
encoder parameters such as image resolution,
output bitrate and input frame rate are fixed.
Furthermore, to integrate these frameworks
into other platform is difficult because the
considerations, like the timing of fetching
the image data, and the output packets
formats of the encoded bitstream, are
usually not compatible with other platforms.
When the manufacturers own their RISC
and relative peripherals, such as LCD,
memory card, and USB controllers, all they

need is an MPEG-4 encoder which can
easily integrate into their system-on-chip
(SoC) design for various applications.
However, the dedicated and limited
functionalities of these encoders usually
force the producers to establish their
products by dual-chip. One is their RISC
and relative peripheral controllers, and the
other is an MPEG-4 encoder. The overall
cost and the applications will be restricted.

In this paper, a register-based platform
independent MPEG-4 co-processor (RPIMC)
is proposed. The main ideas of this paper are
to provide a programmable MPEG-4
encoder which can easily integrated into any
platforms. To satisfy the demand for various
applications, RPIMC can modify the input
frame size, input frame rate, and output
bitrate by adjusting the relative registers.
The main controller of RPIMC will
automatically calculate the internal loops of
the pipelines for encoding, and will read the
data in the corresponding memory with the
correct image resolution based on these
registers, respectively. Therefore, the
manufacturers who need MPEG-4 encoders
can easily integrate RPIMC into their
platforms, and they can use RPIMC for
various applications with proper register
settings. Not only the innovative features are
developed, but also the algorithms which
can fit the requirements are adopted.
According to the computational complexity
analysis report in [6] and [7], the dominating
computation-intensive tasks in MPEG-4
core profile coding are motion estimation
(ME) and shape coding, which together
contribute more than 90% of the overall
complexity. For simple profile without shape
coding tools, ME becomes the most
significant one. Hence, an efficient
hierarchical motion estimation algorithm
(HMEA) is applied [8]. HMEA using
multi-resolution frames to reduce the
computational complexity and excellent
estimation performance is ensured using an
averaging filter to down-sample the original
image. When the image resolution is larger,
HMEA can reduce more sum of absolute
difference (SAD) operations.

 3

The main contribution of this paper is
to design a high quality programmable video
encoder that is suitable for every platform
and every purpose with small gate counts to
solve the changeless disadvantage of normal
VLSI frameworks [2]-[5].

The rest of this paper is organized as
follows. Section II shows the architecture of
RPIMC. Section III presents the efficient
motion unit (MU) framework. Section IV
depicts the results of implementation and
Section V draws conclusions.

II. The Architecture of RPIMC

Figure 1 shows the overall architecture
of RPIMC, and it mainly contains four parts,
controller, MU, texture coding engine (TCE),
and bitstream generator (BG). The controller
will calculate the required inter loops for
different input frame resolutions, and it is
also responsible for macro block (MB) level
hardware scheduling, and coding mode
decision. Other hardware accelerators
improve the system performance by parallel
processing according to the parallelism of
algorithms. MU includes ME and motion
compensation (MC), and can carries out ME
with the search range from -16.0 to +15.5
pixel unit. Moreover, it interpolates pixels in
reference frames into compensated MBs
with the specific motion vector (MV). DCT,
IDCT, quantization (Q), inverse Q (IQ), and
AC/DC prediction on texture pixels in MBs
are integrated in TCE. BG produces bitstrem
headers, motion information, and texture
information in the format of variable length
codes. The hardware pipeline scheduling
and the register bank will be described
below.

Fig. 1 The overall architecture of RPIMC

A. The hardware pipeline scheduling

After analyzing the clock cycles needed
for processing one macro block, three stages
pipeline scheduling, which is divided by
MU, TCE and BG, is applied. As shown in
Fig. 2, RPIMC will fetch the input frame
MB by MB, and the pipeline processing can
be separated into the intra and the inter
modes since MU is not activated in the latter
mode. The duration for processing one MB
is called one time slot (TS), which is the
period between two vertical dotted lines, and
MUi, TCEi, and BGi denote the operation of
the i-th MB of the image in the
corresponding hardware accelerators.

In the first TS of the intra mode, only
TCE is activated, and BG is in the suspend
mode in order to reduce the power
consumption. After TCE processing the first
MB, the texture information, which are the
quantization coefficients, will be input into
BG, and TCE will start to manipulate the
second MB in the second TS. In addition to
the scheduling of the accelerators, the usage
of the bus matrix is also an important issue.
In order to maximize the performance, the
occupation of the bus matrix of each
component should be separated as possible
as they can. In RPIMC, the image data is
input in the format of YUV420, and one

1616× MB denotes four 88× Y blocks,
one 88× U block, and one 88× V block.

 4

According to the design of TCE, these six
blocks are manipulated and output in one TS
with the same interval, TCET , which is
shown in Fig. 2.

The first two output data of TCE will
be stored into the local buffer in order to let
the BG to write out the bitstream since the
duration of BG occupying the bus matrix,

BGT , is around TCET×2 . After the fourth
block producing from TCE, the bus matrix
will be free for a while, and the controller
will start to fetch the next MB from the
external memory at this moment. When all
MBs of the image are computed, the
operation mode will be switched from the
intra mode to the inter mode.

As shown in Fig. 3, there are three
pipeline stages in the inter mode. In the first
TS, only MU is enabled and processes the
first MB. After that, TCE will compute the
motion materials while the second MB is in
MU, and BG will be activated to read the
texture information at the third TS. In this
mode, BG will still occupy the bus matrix at
the beginning of each TS, and two FIFO
buffers are adopted to store the temporal
reconstructed MBs from MU since the bus is
busy in the first half of TS. The controller
will manage the usage of the bus matrix
after BG finished, and ME will have higher
priority than MC. If ME wants to fetch the
next MB, MC will put the reconstructed MB
into FIFO. Otherwise, MC will output the
data to the external memory when ME is not
using the bus. In this way, the pipeline
scheduling and the usage of the bus matrix
will be efficient to increase the overall
processing speed. TS of each MB is 1,200
cycles in average, depending on the cycle
time of BG occupying the bus.

If the latency of external memory is 5
cycles at the operating frequency of 20-MHz,
which is 250 ns per word, RPIMC will
encode the MPEG-4 videos for CIF format
at 21-MHz for real-time applications.

Fig. 2 The intra MB scheduling

Fig. 3 The inter MB scheduling

B. The register bank

The design of the register bank makes
RPIMC independent from the platforms, and
it combines the control registers (CRs) and
the status registers (SRs). The main feature
of RPIMC is that it can program several
system parameters to satisfy various
applications, such as mobile video phones,
digital video recorders, and high
performance surveillance systems. In these
utilizations, the required frame resolution,
FPS, the output bitrate and the power
consumption are different from each other.
The manufacturers who have their own
platforms can integrate RPIMC easily by
setting the corresponding CRs, and RPIMC
will start to encode the video with the format
they want. The working flow of RPIMC is
shown in Fig. 4, and CRs and SRs with their
definitions are listed in Table 1.

 5

Fig. 4 The flow chart of the controller

To achieve the platform independent
design, the controller has to verify the value
of CRs in the initial state. At the beginning,
it will fetch the values in the register bank,
and check if the start memory address of the
current frame, the reference frame, and the
output data are overlapped by adding them
with the size of each input picture which can
be obtained in CRs. Since RPIMC can allow
these input data be arranged in the
discontinuous memory block to make the
design of the platforms flexibly and
efficiently, if one address of them is placed
within the manipulated area of the others,
RPIMC will not be ready and stays in the
idle state. The decision equation is (1),
where ()xAdd , sizeimg , and S represents

the start place of ()x , the size of the image,
and the set of memory address of the current
frame, the reference frame, and the output
data, respectively.

()
() ()[]

() ()[]

()

()

()

, , ,

,

 , , ,

,
 ,

 ,

CBAand

Add

Add

Add

S

SCBAwhere

imgAddAdd
imgAddAdd

Add

dataoutput

framecurrent

framereference

sizeCC

sizeBB
A

≠≠
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=

∈

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+∪

+
∈

 (1)

Furthermore, because the encoding
cycles for one 1616× block of RPIMC are
fixed, the controller can estimate the
computing ability according to the input
operating frequency in CRs. If the
requirement of the image resolution and the
frame rate exceed the load of RPIMC,
illustrated in (2), where blockC denotes the
required cycles for encoding one block, the
co-processor will not be enabled, too. On the
contrary, while it has free time to wait for
the image data, the controller will
automatically gated the input clock and
rewrite the SRs to save the power.

frequencyinputfps
img

C size
block

1616
f×

×
× , (2)

If the initialization procedure is passed
with no errors, the controller will calculate
the number of loops for encoding a frame by
the desired image resolution. Then, the
image data will be input one block by one
block at the address assigned in the CRs,
and the controller will determine whether
the input block is intra or inter one. If it is an
intra one, it will be sent to TCE, or else to
MU. When the loops are finished, RPIMC
will be back to the idle state to reduce the
power consumption. In order to make the
host easier to integrate with RPIMC, it will
reflect the encoder conditions to the host
through SRs. The mode of the encoder (intra
MB or inter MB), the current working status
(idle, enable, finish, or sleep), and the
bitstream size of the encoded frame will be
stored in SRs by the controller of RPIMC.

 6

Table 1 The register banks
Types Name Description

W The width of the input image
H The height of the input image

I_Size The size of the input image
I_FPS The input frame rate
Bitrate The output bit rate
Clock The input operating frequency
MEM1 The start address of MEM1 for current frame
MEM2 The start address of MEM2 for reconstructed frame
O_FPS The output frame rate

CR

Out The start address of output bitstream
Status The current state of RPIMC (Idle, Enable, Sleep or Finish)
O_Size The size of the output bitstream SR
Mode The current operating mode of RPIMC (Intra / Inter)

C. Memory organization

RPIMC requires the off-chip memory
(OFFM) and several on-chip memory (ONM)
blocks to complete the whole MPEG-4
video encoding procedure. OFFM contains
source frames and reconstructed frames, and
ONM is used as local buffers to reduce the
bus bandwidth. In order to increase the
speed of TCE for fitting the pipeline
scheduling, the transformed coefficients for
AC/DC prediction and the transpose
memory for DCT/IDCT are integrated into
ONM. Besides, for the data fetching
performance and the information reuse
efficiency, ONM allocates the space for
storing the current MB and the search area
for MU, and it also includes the input and
output buffer for both TE and BG,
respectively.

The input video source and the
reference frames are stored in OFFM, and
the direct memory access (DMA) plays an
important role to control the memory
interface to read data from or write them out
to OFFM in a specified sequence after being
initialized by the controller. In the OFFM
design, two main parts, MEM1 and MEM2

are used to store two frames and they act as
the ping-pong buffer to increase the
encoding speed. The operations for MEM1
and MEM2 can be separated into two modes.
First, in the intra frame mode, the input
images are always stored in MEM1, and the
reconstructed frame produced from TCE
will be saved in MEM2. Second, in the inter
frame mode, since the current frame will be
the reference frame in the next encoding
loop, these two parts will switching their
status mutually until the next intra frame
mode, and the scheme is illustrated in Fig. 5.

Fig. 5 The state of the external memory

 7

III. The Efficient HEMA

HMEA uses multi-resolution frames to
reduce the computational complexity, and
excellent estimation performance is ensured
using an averaging filter to down-sample the
original image. At the smallest resolution,
the least two motion vector candidates are
selected using a full-search block matching
algorithm (FSBMA). At the middle level,
these two candidate motion vectors are
employed as the center points for small
range local searches. Then, at the original
resolution, the final motion vector is
obtained by performing a local search
around the single candidate from the middle
level. HMEA exhibits regular data flow and
is suitable for hardware implementation. An
efficient VLSI architecture that includes an
averaging filter to down-sample the image
and two 2-dimensional semi-systolic
processing element arrays to determine the
sum of absolute difference (SAD) in
pipeline is also presented. Simulation results
indicate that HMEA is more area-efficient
and faster than many full-search and
multi-resolution architectures while
maintaining high video quality. HMEA can
be divided into two parts. One is the
averaging filter for down-sampling, and the
other is the MV search procedure. The
complete algorithm is described as below.

A. Hierarchical Frame Structure

The HMEA comprises three resolution
levels, from zero to two. Level 0 is the top
level, and the level 2 is the lowest.
Numerous ways are available to
down-sample an image. Based on the test
results and the easy VLSI implementation,
the averaging filter is selected. Moreover,
the downsampling elements can be re-used
for interpolating the half accuracy pixels
during the half-pel search. For the k-th input
frame, () ()⋅2

kI , the upper level images are
computed by executing the following
down-sampling:

() () () ()∑∑
+

=

+

=

− =⋅=
12

2

12

2

1 2 ,1 ,,
4
1,

i

im

j

jn

l
k

l
k lfornmIjiI , (3)

where ()()jiI l
k ,1− represents the value at

position ()ji, of the k-th frame at level
1−l .

The test results presented in Table 2
indicates that the estimation performance of
adopting averaging filter is significantly
exceeds that of the method that considers
only the left-top pixel and the
two-dimensional discrete wavelet transform
(2D-DWT), and can be used to design an
efficient down-sampling hardware
architecture. Antonini 9/7 DWT requires
higher computational power, but it provides
poor quality in the downsampling stage of
HMEA. Moreover, if the scaling factor of
Haar DWT is replaced by 1/2, the results are
exactly the same as the averaging filter, and
can get rid of the dynamic range problem.
The reason of the averaging filter
outperforms the Haar DWT is that 21 is
chosen as its scaling factor, and this will
cause the inaccuracy of the values of
downsampled pixels. Considering both the
coding performance and the hardware
design, the averaging filter is chosen to
down-sample the image in HMEA.
Therefore, the averaging filter is chosen to
down-sample the image.

The number of pixels at the next lower
level is reduced to one quarter the number at
the upper level. Figure 6 shows the
hierarchical frame structure. The MB size
changes from 16 16× , through 8 8× , to
4 4× at levels 2, 1 and 0, respectively.

In block matching algorithm, SAD is
an important procedure, and its value at
level l can be defined as

() ()
() ()

() ()

()[]()[]
∑ ∑

−

=

−

= −

− −

++−

=
1216

0

1216

0 1

2 2

,

,

,
l l

i j
l

k

l
k

l
MB

qjpiI

jiI

qpSAD

, (4)

where l is the level number and l=0, 1, 2.

 8

Table 2 The comparison of the video quality between various downsampling methods for
left-top, Haar’s DWT, Atonini’s 9/7 DWT, and the averaging filter in dB.

Left-top Antonini 9/7 DWT Haar DWT Averaging filter Video
Sequence PSNR PSNR PSNR PSNR

News 32.79 33.84 35.42 35.45
Flower
garden

21.43 24.23 26.55 26.62

Foreman 30.53 28.74 33.14 33.18
Table tennis 31.02 32.17 33.05 33.07

Stefan 23.81 22.35 25.67 25.82
Mobile 23.07 21.42 24.49 24.53

Fig. 6 The hierarchical frame structure

In the above equation, the
computational complexity of the matching
process can be enormously reduced. At level
1, the computational complexity is only one
quarter that on level 2, and that at level 0 is
one quarter that at level 1.

B. Framework of HMEA

The overall searching process can be
separated into three levels. As presented in
Fig. 6, when level 2 receives an input image

() ()⋅2
kI , the image will be down-sampled to
() ()⋅1
kI and () ()⋅0

kI , where the resolutions of
() ()⋅1
kI and () ()⋅0

kI are one quarter and one
sixteenth of that of () ()⋅2

kI , respectively. Let
the entire search range at level 2, or ()2Ω , be
[]1, −− ww . After the original image () ()⋅2

kI
has been down-sampled, the search
procedure, illustrated in Fig. 7, begins. Let

()lCur , ()lPre , ()l
kSA and ()l

nMV denote
the current MB, the previous frame search
area, the k-th search area and the n-th MV
candidate at level l, respectively. The MV

searching process is completed when MBMV ,
defined in (5), has been determined.

() () ()2
0

1
0

0 24 MVMVMVMV iMB +×+×= , (5)

C. Half-pel Search

After MBMV is manipulated, the
half-pel search is started. Therefore, the
neighboring half accuracy pixels of the

MBMV have to be calculated, and a total of
833 pixels and 8 SADs are necessary. The
complexity of the half-pel search, halfC is
defined as (6), and it is combined with the
pixels and the SAD operations.

() fhalf RHWNMC ×
×

××+×= 216
8833 , (6)

where M , N and fR are the number of
operations required to compute a half
accuracy pixel, the SAD operation, and the
frame rate, respectively. Fortunately, the
downsampling stage of HMEA has already
calculated 144 pixels for half-pel search so
the complexity of half-pel search for HMEA,

HMEAhalfC _ , can be reduced as (7).

() fHMEAhalf RHWNMC ×
×

××+×= 2_ 16
8689 , (7)

 9

Fig. 7 The hierarchical search procedure

D. Complexity Analysis

The overall search procedure includes
the downsamping stage, downsampleC , the
integer-pel search, and the half-pel search,
and downsampleC is defined as (8). The half

accuracy pixels only need one addition to
manipulate where the pre-processed pixels
for HMEA requires three of them, and the
shift operation can be reduced by reading
the higher bits of the pixel. Therefore, the
cycles for downsampling a pixel are three
times to them for the half accuracy pixels.

 10

During the overall search procedure, the
search complexity is described as (9):

⎥
⎦

⎤
⎢
⎣

⎡
××⎟

⎠
⎞

⎜
⎝
⎛ ×

+
×

= MHWHWCdownsample 3
42 22

, (8)

() () ()

HMEAhalfdownsamplef

HMEAhalfdownsampleHMEA

CCRHWN

w

CCCCCC

_2
2

2

0
2

2

1
2

2

2

2

_
210

16
16

2
15

2
152

2
11

2

++×
×

×××

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛×+⎟

⎠
⎞

⎜
⎝
⎛×+⎟

⎠
⎞

⎜
⎝
⎛×⎟

⎠
⎞

⎜
⎝
⎛ +=

++++=
, (9)

where ()lC represents the search
complexity in level l. In the case of FSBMA,
computational complexity is given by (10).

() halffFSBMA CRHWNwC +×
×

×××+= 2
22

16
1612 , (10)

The SAD operation for a pixel, which
is described in (4), needs 256 additions, and
256 subtractions, and the manipulation for a
half accuracy pixel only requires one
additions. Therefore, the relationship
between M , and N can be illustrated as
(11).

256256 +
=

NM , (11)

From the equations (9) to (13), they
demonstrate that the computational
complexity of HMEA will be only 3.9% and
1.3% of that of it of FSBMA for w of 16 and
32, respectively.

E. The comparison between the ME
architectures

The MPEG test video sequences:
“News,＂ “Foreman,＂ “Flower
garden,＂ “Table tennis,＂ “Stefan,＂
and “Mobile＂ are used to evaluate the
performance of HMEA.
All the sequences consist of 300 frames; the
frame rate is 30 FPS, and the image size is
CIF. The search range is defined as
[]1, −− ww , where w=16. The PSNR is used
for the measurement of performance, and
the PSNR is defined as (12).

() ()[]∑∑
−

=

−

=

−
⋅

= 1

0

1

0

2

2

10

,ˆ,1
255log10 H

i

W

j
kk jiIjiI

HW

PSNR , (12)

where ()k̂I ⋅ is the k-th motion
compensated image, respectively.

The performance of HMEA is
compared to that of two well-known
algorithms: FSBMA and n-step search (nSS)
[9], and two MMEA algorithms, MRMC-m
[10] and MRMCS [11]. nSS is a general
version of the 3SS to cover the increased
search ranges (=n 3, 4, 5 for =w 8, 16, 32,
respectively). MRMC-m is a MMEA based
on multiple candidates, and it has
m-candidates at each resolution. MRMCS
uses three MV candidates at level 1, and two
of the MV candidates that are obtained on
the basis of minimum matching error at
level 0, and the other one is based on the
spatial MV correlation. MRMC-m and
MRMCS are both using left-top method for
downsampling the images, and they also
keep multiple winners at the top level.

Tables 3 and 4 present the results. Table
3 describes the complexity of these four
algorithms in the various search area, and
Table 4 shows the performance in terms of
PSNR. According to these tables, HMEA
provides a prospective PSNR performance
that is close to that of FSBMA, and a greater
search range corresponds to a lower
complexity. Although the averaging filter
has higher computational complexity than
the left-top method which MRMCS and
MRMC-m adopted, the number of the MV
candidates in level 1 of HMEA is less than
the other two MMEAs. Therefore, the
overall complexity of HMEA is smaller than
MRMCS and MRMC-m. In Table 3, nSS
exhibits the lowest computational
complexity with consistency that is proper
for hardware implementation. However, it
can be observed that nSS provides the lower
PSNR especially for the sequences that have
fast motion. Besides, although MRMC-m
also needs a consistent computational
complexity, it contributes the worse PSNR
than MRMCS and HMEA for similar

 11

Table 3 The comparison of the complexity, including half-pel search, between FSBMA, nSS,
MRMC-4, MRMCS and HMEA in different search ranges.

Search Range FSBMA nSS MRMC-4 MRMCS HMEA
8 100 10.05 18.00 17.66 13.53
16 100 3.22 4.96 4.78 3.91
32 100 1.02 1.52 1.52 1.32

Table 4 The PSNR comparisons of various fast-search algorithms in dB.

Video Sequence HMEA FSBMA 4SS MRMC-4 MRMCS
News 35.45 35.85 34.83 35.01 35.15

Flowergarden 26.62 27.22 26.39 26.57 26.71
Foreman 33.18 33.70 32.15 32.97 33.14

Table tennis 33.07 34.08 32.16 32.45 33.05
Stefan 25.82 26.43 25.13 25.41 25.98
Mobile 24.53 25.18 23.96 24.11 24.65

computational complexity. Meanwhile, the
PSNR of HMEA is slightly less than
MRMCS in the video sequences that contain
high motions since MRMCS applies an MV
candidate based on spatial correlation in an
MV field. However, MRMCS needs many
more cycles to manipulate the MV candidate.
Based on the computational complexity
resulted determined by the tests, HMEA is
the most suitable algorithm for VLSI
implementation.

V. Implementation Results

The hardware architecture of RPIMC,
as described in Section II, with the efficient
HMEA [8], illustrated in Section III, is
successfully implemented. The VLSI
circuits were described in VHDL and
synthesized by SYNOPSYS Design
Analyzer using UMC 0.18um CMOS
standard cell library. The chip
implementation results and the performance
comparison will be depicted in this Section.

A. The chip implementation results

The total gate counts of RPIMC are
204K gates, and it contains 6,462 bytes
on-chip memory. Since the major features of
RPIMC are that it is platform-independent
and is programmable to encode videos with
different resolutions and frame rate, RPIMC
usually faces the situation of waiting the
platforms. Therefore, RPIMC introduce two
kinds of power saving techniques, sleep
mode and clock gating. Sleep mode offers
the greatest power savings to the user, and
during this mode, RPIMC watches for a
wake-up event which is asserted by the
external pin. On the other hand, the clock
gating can reduce a large percentage of the
power since the logic activity in RPIMC is
very high (~90%). Each clock of the blocks
in RPIMC can be gated by the controller to
manage the power down mode according to
the operations. The chip layout and the
specification are shown in Fig. 11, and Table
5. When RPIMC is operating at 21 MHz to
encode the images in CIF at 30 FPS, it
consumes 262 mW. RPIMC has been
confirmed that the maximum operating
frequency of 140 MHz in a typical condition
by the Shmoo Utility, and it means that
RPIMC can perform the video compression

 12

up to the complexity of 1280x720 (HD) at
20 FPS which is enough for the usage of any
consumer electronics and even surveillance
systems.

B. The performance comparisons

The encoding performance of RPIMC
is compared with the XviD MPEG-4
software encoder using various test
sequences provided by MPEG, and the result
is shown in Table 6. It can be observed that
the quality of RPIMC is a little less than
XviD because the data precision of the
hardware design is not as good as the
software model, especially in the TCE block.
However, the quality decrease of RPIMC is
not easy to be distinguished by the human
eyes.

Fig. 11 The chip layout

Table 7 demonstrates the comparison
between some MPEG-4 video encoders
proposed before. In [2], it is full dedicated
hardware video codec design, and it uses
MVFAST for ME with search range equals
to -16~+15.5 with extremely low operating
frequency and power dissipation. However,
the full dedicated design lacks of flexibility
for future integration. The platform-based
designs, including [12] and [3]-[5], are in
hardware/software co-design fashion with
performance and flexibility. In [5], it adopts
3SS for ME with the search range of
-32~+31.5, and several LSI, such as the
logic for H.223, the speech DSP, and an

16-Mb embedded DRAM, are also
integrated. Although it contains many
functions, its die size is too large and it can
only encode the images of QCIF at 15 FPS.
As for [4] choose a coarse ME with search
range -8~+7.5, and it contains an ARM
embedded microprocessor and it consumes
500 mW to compute the images of CIF at 15
FPS. In the above designs, the encoding
complexities are too low, and their gate
counts are too high for consumer electronics.
In [3], the cost-efficient video encoder SoC
consumes 256.8 mW at 40 MHz and
achieves real-time encoding of CIF at 30
FPS. All of these designs before only works
for specific resolution of the input images,
and are not easy to integrate to other
platforms. RPIMC with the programmable
register bank and the efficient HMEA [8]
which can manipulate various image sizes,
up to HD, and it is designed to be a
platform-independent co-processor. In the
viewpoint of video encoder part, RPIMC has
the richest functionalities, the highest
encoding complexity and the lowest cost.

VI. Conclusions

This paper has addressed the
implementation of RPIMC, which can
encode various format of the input image by
setting the corresponding register bank, and
its system-level design. With the
programmable controller and the efficient
HMEA, RPIMC can compress the real-time
video at low operating frequency, 21 MHz,
for the real-time application for CIF images
to reduce the power consumption, compared
with other MPEG-4 chips. The proposed
architecture is designed to be easily
integrated into other platforms by modifying
the wrapper to achieve the
platform-independent purpose to wider its
applications.

Acknowledgment

This work was supported by National
Science Council under Grand no. NSC

 13

Table 5 The chip specification of RPIMC

Supported image format YUV 4:2:0
Supported VOP type I frame & P frame
Supported image size Programmable, Up to HD (1280 x 720)
Encoding frame rate Programmable, Up to 30 frames/sec
Maximum operation frequency 140 MHz
Voltage 1.8 V
Power consumption 262 mW @ 21 MHz
Gate count 204K gates
On-chip memory 6462 bytes
ME Algorithm HMEA, 4MV mode, Search range -16.0 to +15.5

Table 6 The performance comparison between the software model and RPIMC in dB

Video sequences XviD official version software
encoder

RPIMC

Akiyo 42.38 41.45
Foreman 30.81 29.92

Table tennis 31.51 29.66
Mobile 21.31 20.93

Flower garden 22.25 21.88

Table 7 The performance comparison between other MPEG-4 chips and RPIMC

Designer [2] [3] [4] [5] [12] RPIMC
Encoding

Complexity
CIF,

15FPS
CIF,

30 FPS
CIF,

15FPS
QCIF,
15 FPS

CIF,
30FPS

Programmable
Up to HD, 20FPS

Operating
Frequency

(MHz)
13.5 40 27 60 36 Maximum 140

Power
(mW)

29 256.8 500 240 N/A 262 @ 21 MHz

Gate Counts
(K)

700 278 1,700
6,800

(DRAM)
170 204

Process
(μ m) 0.18 0.35 0.35 0.25 0.18 0.18

95-2752-E-009-012-PAE, and Aiming for
the Top University Plan of the National
Chiao Tung University and Ministry of
Education, Taiwan, under Grant 95W803E.

References

[1] A. Hatabu, T. Miyazaki, and I. Kuroda,
“QVGA/CIF resolution MPEG-4 video
codec based on a low-power and

 14

general-purpose DSP,” in IEEE
Workshop on Signal Processing Systems
(SIPS), 2002, pp. 15-20.

[2] H. Nakayama, T. Yoshitake, H.
Komazaki, Y. Watanabe, H. Araki, K.
Morioka, J. Li, L. Prilin, S. Lee, H.
Kubosawa, and Y. Otobe, “An MPEG-4
Video LSI with an Error-Resilient Codec
Core Based on a Fast Motion Estimation
Algorithm,” in IEEE internal Solid-State
Circuits Conference (ISSCC), 2002, Vol.
1, pp. 368-370.

[3] Ying-Chi Chang, Wei-Min Chao and
Liang-Gee Chen, “Platform-based
MPEG-4 Video Encoder SoC Design,”
in IEEE Workshop on Signal Processing
Systems (SIPS), 2004, pp. 251-256.

[4] J. H. Park, I. K. Kim, S. M. Kim, S. M.
Park, B. T. Koo, K. S. Shin, K. B. Seo,
and J. J. Cha, “MPEG-4 Video Codec on
an ARM Core and AMBA,” in Workshop
and Exhibition on MPEG-4, 2001, pp.
95-98.

[5] M. Takahashi, T. Nishikawa, M. Hamada,
T. Takayanagi, H. Arakida, N. Machida,
H. Yamamoto, T. Fujiyoshi, Y. Ohashi, O.
Yamagishi, T. Samata, A. Asano, T.
Terazawa, K. Ohmori, Y. Watanabe, H.
Nakamura, S. Minami, T. Kuroda, and T.
Furuyama, “A 60-MHz 240-mW
MPEG-4 Videophone LSI with 16-Mb
Embedded DRAM,” IEEE Journal of
Solid-State Circuit, Vol. 35, No. 11, pp.
1713-1721, Nov. 2000.

[6] P. M. Kuhn and W. Stechele,
“Complexity analysis of the emerging
MPEG-4 standard as a basis for VLSI

implementation,” in International
Conference on Visual Communications
and Image Processing, 1998.

[7] H. C. Chang, L. G. Chen, M. Y. Hsu, and
Y. C. Chang, “Performance analysis and
architecture evaluation of MPEG-4
video codec system,” in IEEE
International Symposium on Circuits
and Systems (ISCAS), 2000, Vol. 2, pp.
449-452.

[8] Bing-Fei Wu, Hsin-Yuan Peng, and
Tung-Lung Yu, “Efficient Hierarchical
Motion Estimation Algorithm And Its
VLSI Architecture,” accepted by IEEE
Trans. On VLSI Syst., Sep. 16, 2007.

[9] J. Lu and M. L. Liou, “A simple efficient
search algorithm for block matching
motion estimation,” IEEE Trans.
Circuits Syst. Video Technol.,vol. 7, Apr.
1997, 429-433.

[10] X. Song, T. Chiang, X. Lee, and Y.-Q.
Zhang, “New fast binary pyramid
motion estimation for MPEG2 and
HDTV encoding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 10, pp.
1015-1028, Oct. 2000.

[11] Jae Hun Lee, Kyoung Won Lim, Byung
Cheol Song, and Jong Becom Ra, “A
Fast Multi-resolution Block Matching
Algorithm and its LSI Architecture for
Low Bit-Rate Video Coding,” IEEE
Trans. On Circuits and Systems for Video
Technology, Vol. 11, No. 12, Dec. 2001.

[12] Amphion CS6701 is available on
http://www.amphion.com/

