
 1

Hardware Context Switching Methodology for Dynamically
Partially Reconfigurable Systems

Trong-Yen Lee1, Che-Cheng Hu1, Li-Wen Lai1, Chia-Chun Tsai2 and Rong-Shue Hsiao1
1Department of Electronic Engineering and Institute of Computer and Communication

Engineering, National Taipei University of Technology
2Department of Computer Science and Information Engineering, Nanhua University

E-mail: 1tylee@en.ntut.edu.tw

Abstract

The hardware in dynamic partial
reconfiguration FPGA (Field Programmable
Gate Array) system is divided into several
modules. But, dynamic reconfiguration
hardware module also consumes a lot of
memory to save the hardware content in
context switching. Therefore, we propose a
methodology of hardware context switching
for dynamically partially reconfigurable
FPGA systems. This method can reduces
used space of frame address and register
bit-index. The method is realized in saving
data location in the operation of Readback.
We use the relationship of frame address to
avoid reading repeated frame address and
then the data storage space and the
reconfiguration time for hardware context
will be reduced. Comparison of related work,
the experimental results show that our
proposed method reduce 49.67% of memory
size for saving hardware context and 4.011%
of hardware reconfiguration time.

Keywords: Context switching, dynamically
partially reconfigurable system, Readback,
reconfiguration time.

I. Introduction

Generally, the hardware in dynamic
partial reconfiguration systems can be
reconfigured in the run-time. The engineer
can design a lot of hardware tasks in a single
FPGA(Field Programmable Gate Array),

and dynamically change circuits of the
system according to system requirement.
But hardware doesn’t have the ability of
context switching like software, so the
hardware only could be reconfigured after
all inside tasks are finished. Thus, the
dynamic reconfiguration is restricted. If the
hardware has the ability of context switching
in the reconfigurable system, then the
hardware can be swapped arbitrarily. The
hardware resource should be released, while
there is other task that has higher priority to
be executed. Moreover, tasks can be
reloaded to execute the unfinished works
while they request for swap-in again.
Therefore, this dynamic reconfigurable
system has both the context switching
characteristic of software and the efficiency
of hardware.

We propose a method of saving and
restoring hardware context. In order to get
and save the critical frames, we need to find
the bit index of register. Our propose method
only needs to read the important frames of
hardware context instead of all frames of
hardware context. Therefore, we need to
analyze the characteristic of FPGA structure
in order to get the relations between bit
indexes and frame addresses. This method
can reduce the storage space of hardware
context and complexity of Readback
operation, besides we don’t need to modify
the circuit of functional tasks or insert any
additional circuits. For reasons mentioned
above, our proposed method is very flexible
and portable. We choose SelectMAP
interface to operate Readback procedures for
its high configuration speed characteristic.

The rest of this paper is organized as

 2

follows. We will discuss related works of
dynamic reconfiguration system in Section
II. In Section III, we will describe the FPGA
structure. Proposed method and architecture
of context saving and restoring will be
described in Section IV. In Section V, we use
three design examples to verify the
correctness of our proposed method and
estimate the storage space and performance
of reconfiguration time. Finally, we
conclude this paper in Section VI.

II. Related Work

Because of the improvement of Integrated
Circuit design technology, FPGA chip has
lower power consumption and flexible
structure. Current FPGA systems have the
ability of partial reconfiguration and sharing
resources among hardware tasks. This
concept is like the general software
operating system. However, in order to
transform this concept into FPGA systems,
we develop a mechanism to suspend and
restart different spatial or temporal hardware
tasks on FPGA [1][2].

Kalte [1] and Koester [2] divided the
approaches of realizing the task switching
into two categories. The first approach is
task specific access structure. The second
approach is configuration port access. The
task specific access structure is to add
read/write interfaces into registers. The
configuration port access approach is to use
the Readback function based on the FPGA
configuration port. The Readback function
can arbitrarily read frame data of
configuration memory which include present
registers values and the RAM content.
Therefore, the bitstream can all or partial is
read. After or during the Readback operation,
the state information will be filtered and
saved in the output of Readback stream. And
during allocation step, the state information
can be restored to suitable locations in
FPGA, such as the flip-flops data or the
RAM contents in the FPGA structure. The
applications of this approach can be found in
[1], [2], [3] and [4]. The advantage of
configuration port access approach is that it

does not need to increase extra hardware
circuits into the hardware task modules.
Therefore, it will not increase the designed
difficulty and resource consumption.
Besides, the designer does not need
knowledge about the internal behavior of the
task. The drawback of this approach is the
poor data usage because of the useless data
is too much.

Kalte [1] only saves locations of the
registers which consist of the information of
row and column in FPGA. The information
of the row and column are used to calculate
register location which is to operate
Readback and filter the present state
information of the register. The method can
avoid reading whole frame of the hardware
in the operation of Readback. Kalte [1] uses
19-bit data to save content and location of a
register (8-bit row, 8-bit column, 1-bit slices,
1-bit flip-flop, and 1-bit present state of
register). By Kalte’s approach, the data
amount is proportional to the used number
of registers.

When dealing with the context switching
of the hardware, Readback approach won’t
be restricted to the hardware task category.
Consequently, we adopt this approach to
save and restore hardware context when the
hardware module needs to be switched. We
will use Virtex-II FPGA platform to realize
our proposed method, and the internal
structure will be introduced in next section.

III. FPGA Structure

The configuration FPGA means to writing
bitstream into configuration memory of
FPGA. Bitst ream include the logic
configuration and the data information
inside FPGA. As shown in Fig. 1 [5], the
configuration memory frame is organized by
a rectangular form which is 1-bit width
expanded on entire FPGA column. The
frame is the smallest addressable unit of the
configuration memory that is loaded to
FPGA by column-base. The frame length
and number in every column decide upon
the ser ies of FPGA. Here , we use
XC2V1000 which has 106 words per frame

 3

CL
B

Co
lu

m
n

CL
B

Co
lu

m
n

IO
B

Co
lu

m
n

IO
I C

ol
um

n

CL
B

Co
lu

m
n

CL
B

Co
lu

m
n

BR
AM

 C
ol

um
n

BR
AM

 In
t C

ol
um

n

CL
B

Co
lu

m
n

CL
B

Co
lu

m
n

GC
LK

 C
ol

um
n

CL
B

Co
lu

m
n

CL
B

Co
lu

m
n

BR
AM

 C
ol

um
n

BR
AM

 In
t C

ol
um

n

IO
B

Co
lu

m
n

IO
I C

ol
um

n

Co
nf

ig
ur

at
io

n
M

em
or

y
Fr

am
e

1 bit
IOB

Fig. 1. Virtex-II configuration column and
frame Overlay [5]

length and 22 frames per CLB column to
implement our proposed system. The kinds
of frame are separated into IOB, IOI, CLB,
BRAM, BRAM_INT and GCLK, as shown
in Fig. 1. Each kind of column leads
different amount of frames per column
[5][6].

A. The Frame Addressing

The frame address use 32-bit. Each frame
address is divided into major address (MJA),
minor address (MNA) and block address
(BA), as shown in TABLE I. Figure 2 shows
the Virtex-II configuration memory map.
The MJA decides the specific column in the
configuration memory, and is arranged by
the column base in FPGA. The n is the
number of existing CLB column and the m
is the number of existing BRAM column.
The MNA is related to the location of the
frame in the column. The BA represents
column type in the configuration memory.

B. The Configuration Registers

The configuration logic is saved and
controlled by a 32-bit register which is
c a l l e d c o n f i g u r a t i o n r e g i s t e r. A l l
configurations (configuration or Readback)
configure through reading or writing the
configuration register data [5]. The
configuration registers consist of the CRC

TABLE I. Frame address for Virtext-II
FPGA

 BA MJA MNA Byte
Number

Bits 31-27 26-25 24-17 16-9 8-0
Content 0 x x x 0

0

0

0

1

0

2

0

3

0

4

0

5

0

n
+
2

0

n
+
3

0

n
+
4

1

0

1

m

2

0

2

m

Column
Type

BA

MJA

G
LC

K
IO

B
IO

I
C

LB
C

LB
C

LB

C
LB

IO
I

IO
B

BR
A

M

BR
A

M

BR
A

M
 IN

T

BR
A

M
 IN

T

Fig.2. Column-Level (MJA) configuration

memory map [5]

(Cyclic Redundancy Check) register,
command register (CMD), frame data input
register (FDRI), frame data output register
(RDRO), frame address register (FAR) and
so on. The CRC register supplies the data
input to check error by mechanism in [7][8].
The CMD register is indicated configuration
logic and global signal, and to execute other
configuration function. There are commands
of SHUTDOWN, GCAPTURE, RCFG
START and so on. The configuration data is
written into configuration memory by
moving the frame to the FDRI register. The
FDRO is for read/write configuration data or
for capture data from FPGA. The operation
of reading/writing is pipelined by the frame
buffer. Therefore, the smallest FDRI/FDRO
read/write operation requires two frames
data. The FAR register is to assign the
configuration frame address when writing
data to FDRI or reading data from FDRO.

IV. Proposed Hardware Context
Switching

Because of the ability of hardware context
switching in the reconfigurable system that
can suspend the program and restart
program again, we proposed the architecture
of hardware context saving and restoring.

 4

The configuration memory data of FPGA by
SelectMAP interface is read, and those
frames include the register information.
From the logic allocation file (.ll), we can
directly detect and record the frame
addresses of these registers in order to
reduce the computation time for frame
addresses. We find out the same frame
addresses and save one of them and this step
can reduce the storage space of the frame
addresses. Our proposed method is not
necessary to modify the hardware task
circuit or increase extra access circuit
outside the hardware task module. This
method is suitable for all hardware task
modules and won’t be limited by the
behavior of hardware.

A. Context Switching Architecture

Our proposed method for the hardware
context switching is able to read back the
bitstream arbitrarily by the configuration
port of FPGA. Therefore, the hardware
context can be obtained and saved by using
Readback when the hardware is needed to
swap-out. The hardware context will be
restored again when the hardware is needed
to swap-in. Consequently, the original
swapped hardware can continue to
accomplish previous works. We control
SelectMAP interface for hardware context
switching in the dynamically partially
reconfigurable system.

The system architecture of the hardware
context switching is shown in Fig. 3. The

DPR System

CCLK
INIT_B
CS_B
RDWR_B
BUSY
D[0:7]

SelectMAP

(task.bit)

Memory

Database Memory
Controller

Frame Address

Bit Index Para.

Command
ROM

Bit Index Para.
RAM

Bit Index
Calculation

State Memory

Configuration

Controller

Readback

State Filter

Fig. 3. Context switching architecture

system includes five modules: command
ROM, database memory, state memory,
controller of Readback and configuration,
state filter and bitstream memory. The
command ROM stores the commands of
controlling SelectMAP. The database
memory saves frame addresses and
parameters of bit indexes that record the
locations of hardware task registers. Before
the hardware module is swapped out, the
state memory saves the register information
that filtered from the state filter. The state
filter includes the RAM for storing bit index
parameters and the bit index calculation unit.
The RAM of state filter temporarily saves
the bit index parameters of second frame
from the database memory while both
registers in one slice have been used. The bit
index is used to filtering the register location
when reading frames. The controller is used
to handle all flows which include Readback,
configuration through SelectMAP interface.

B. Context Generation

The frame addresses and the bit indexes
of used registers can be found in the logic
al locat ion f i le . They are important
information for building the context
database. Figure 4 shows the generation
flow of context database. Firstly, we
generate the “task.ll” file by BitGen
(bitstream generator) and use the editor to
parse the register information in the logic
allocation file. Next, frame addresses and bit
index parameters of registers are built in
database memory. Each frame address has

Task
Registers
Database

Logic
Allocation

File
(task.ll)

Registers
Parse

BitGen

Frame
Addresses/
Bit Index

Para.

Task

Fig. 4. Context generation flow

 5

32-bit data and all registers only occupy two
frame addresses in one CLB column.
However, when building the database
memory we do not need to save all frame
addresses and bit indexes.

C. Database Memory and State Filter

One CLB is composed of four similar
slices. One slice has two registers that are
XQ and YQ. Therefore, there are 8 registers
in one CLB [5]. We arranged the relation of
rows, columns, frame addresses and bit
index parameters (Y_row) according to the
logic allocation file, as shown in TABLE II.

Each column can be separated into two
categories, one is even column (X_even) and
the other is odd column (X_odd). Each row
can be separated into two kinds of rows
(Y_even, Y_odd, totally named Y_row). For
example, the register occupies two frame
addresses in C1 column that are
00060200(hex) and 00060400(hex).

TABLE II is utilized to derive the MJA of
the frame address of the register which is
shown as equation (1). The MNA value
depends on XQ and YQ. If MNA value is 1
then mean using XQ register. If MNA value
is 2 then mean using YQ register in design.
There are 32 CLB columns in XC2V1000
and then the maximum MJA=32+2 (This
could be known in Fig. 2). Therefore, when

building database memory for the frame
address, we use 6-bit to save the MJA and
2-bit to save the MNA.

 32/)1_(
32/_

+−=
+=

oddX
evenXMJA

 (1)

From TABLE II, we can get some rules of
the bit indexes of registers in the frame. For
example, there are 8 registers in the C1R40
(column 1, row 40) CLB, and these register
data are distributed over bit indexes of 118,
158, 116 and 156. We derive equation (2)
from these rules while the column number is
odd. Similarly, we derive equation (3) if the
column number is even.

)_79(40116___ rowYXoddidxbitfm −×+= (2)

)_79(40118___ rowYXevenidxbitfm −×+= (3)

From equations (2) and (3), we know that
the bit indexes are related to the row number
of CLB. Hence, we build database memory
that only stores the data of Y_row instead of
the bit index. The XC2V1000 FPGA has 40
rows and the maximum Y_row is 79 in a
CLB column. So we use 7-bit to save Y_row
and 1-bit to represent the odd or even
column. This bit will be set to "0" when the
column number is even and be set "1" when
the column number is odd.

When operating Readback procedure to
read the frames that only have used registers,
the state filter obtains Y_row data from the

TABLE II. Frame address and bit Index of registers for XC2V1000
C1

MJA=3
X0 X1

XQ (hex) YQ (hex) XQ (hex) YQ (hex)
MNA=1 MNA=2 MNA=1 MNA=2

Frame Address
(column)

Bit Index (row) 00060200 00060400 00060200 00060400

Y79(dec) 118 118 116 116 R40
Y78(dec) 158 158 156 156
Y77(dec) 198 198 196 196 R39 Y76(dec) 238 238 236 236

… … … … … …

Y1(dec) 3238 3238 3236 3236 R1 Y0(dec) 3278 3278 3276 3276

 6

database memory. Afterward, the bit indexes
of registers are calculated by equations (2)
and (3), it is useful to filter the data of
registers. The register data is saved in the
state memory.

D. Frame Addresses and Bit Indexes
Addressing

The frame addresses and parameters of bit
indexes are saved in the same memory space.
The saving method is to store frame
addresses once in the same column (e.g. C1)
and continue to store the bit index
parameters (Y_row) in the same X column
(X_even or X_odd). Moreover, the registers
occupied two frame addresses in the same
sub-column (e.g. X0) and adjacent locations.

The saving format of database memory
has 10-bit, as shown in TABLE III. The
10-bit data use first 2-bit, Bit_Share_Flag,
to represent the saved information that is
frame address format or bit index parameter
format. If the data format is the frame
address format, the other 8-bit data has 6-bit
for MJA, and 2-bit for MNA. Otherwise, we
use 7-bit to save Y_row and 1-bit to save
X_oe for the bit index parameter. When the
Bit_Share_Flag is represented bit index
parameter format which will be used for
expressing whether the Y_row sharing to the
second frame, and use X_oe to represent the
column number is odd (X_odd) or even
(X_even), as shown in TABLE IV.

TABLE III. Frame address and bit index
parameter of register addressing

Frame Address

Bit_Share_Flag MJA MNA

9 8 7 6 5 4 3 2 1 0

0 0 X X X X X X X X

Bit Index Parameter

Bit_Share_Flag X_oe Y_row

9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X

E. Controller of Readback and
Configuration

The controller serves Readback and
configuration through SelectMAP interface
that is the core of our context switching
system. Moreover, database memory, state
memory, state filter, bitstream memory and
command ROM is also dominated by the
controller. The command ROM saves some
operating commands for SelectMAP
interface.

For reading configuration memory, we
must send commands into the FPGA to
instruct the address and the amount of
reading. The operation of Readback means
reading frames from the FDRO register. For
capturing the states of internal registers, we
must use CAPTURE command. The
Readback procedure is shown in TABLE V,
and the steps are listed as follows:

Step 1: Use the synchronization word to
synchronize configuration logics.

Step 2: Set the SHUTDOWN command to
suspend the internal action of the
hardware module.

Step 3: Set the RCRC command to reset
the CRC register.

Step 4: Write four NOOP words to
confirm SHUTDOWN procedure
which has already been finished.

TABLE IV. The community of bit index and
frame address in the register

Bit_Share_Flag Description
00 The frame address

01
The bit index occupied
on the first frame
address

10
The bit index occupied
on the second frame
address

11
The bit index occupied
on the both frame
addresses

X_oe Description
0 X Column is in the even
1 X Column is in the odd

 7

TABLE V. Setting commands of Readback procedure

Step SelectMAP
Port Direction

Configuration
Data(Hex) Explanation

1 write AA99 5566 Synchronization word
write 3000 8001 Write to CMD register

2
write 0000 000B SHUTDOWN command
write 3000 8001 Write to CMD register

3
write 0000 0007 RCRC command
write 2000 0000 Type 1 NOOP word 0
write 2000 0000 Type 1 NOOP word 1
write 2000 0000 Type 1 NOOP word 3

4

write 2000 0000 Type 1 NOOP word 4
write 3000 8001 Write to CMD register

5
write 0000 000C CAPTURE command
write 3000 8001 Write to CMD register

6
write 0000 0004 RCFG command
write 3000 2001 Write to FAR register

7
write xxxx xxxx Frame address

8 write 2800 6000 Type1 Read 0 word from FDRO
9 write 480x xxxx Type2 Read words from FDRO

write 2000 0000 Type 1 NOOP word 0
10

write 2000 0000 Type 1 NOOP word 1
11 read … Packet data read FDRO word

write 3000 8001 Write to CMD register
12

write 0000 0005 START command
write 3000 8001 Write to CMD register

13
write 0000 0007 RCRC command
write 3000 8001 Write to CMD register

14
write 0000 000D DESYNCH command
write 2000 0000 Type 1 NOOP word 0

15
write 2000 0000 Type 1 NOOP word 1

Step 5: Set the CAPTURE command to
read the present state of the register.

Step 6: Set the RCFG command. This is a
read command from the FDRO.

Step 7: Set the FAR register to write the
initial address of reading.

Step 8: Set the reading word count in
Type1 from FDRO.

Step 9: Set the reading word count ijn
Type2 from FDRO.

Step 10: Write two NOOP words to flush
packet buffer.

Step 11: Start reading configuration data
Step 12: Set START command to begin

the start-up sequence.
Step 13: Set the RCRC command to reset

the CRC register

 8

Step 14: Set DESYNCH command to
desynchronize SelectMAP interface.

Step 15: Write two NOOP words to flush
packet buffer.

F. Efficiency analysis

Because of reading one frame address
needs one pad frame reading time for
flushing the frame buffer. Therefore,
operating Readback procedure to read two
frame addresses needs four frames reading
time that consist of two register frames and
two pad frames. So, we only save the former
frame address instead of both frame
addresses. We can set address to read the
former frame, after that will read out three
frames that include two register frames and
one pad frame. This method can reduce used
commands, storage space of one frame
address and one pad frame reading time
comparing with the Koester’s [2] methods as
shown in Fig. 5.

Kalte [1] used 19-bit to save each state
register. These saved data are calculated for
the frame addresses and bit indexes in the
operation of Readback. Afterward, the data
of registers are filtered out for saving.
However, our method only needs to
calculate bit indexes.

The reconfiguration time depends on the
SelectMAP frequency and procedures of
operation Readback which command
includes: SHUTDOWN (NShudow_cm),
CAPTURE and RCFG (NCap_Rcfg_cm), read
frames (NFar_cm) and START (NStart_cm) as
shown in TABLE V. The sequence of read
frames is related to the number of used CLB
column (Nclb). The time of setting
commands (Tread_cm) is shown in (4). The
time of reading frames needs to add on
Tread_cm and consider the frame length of
FPGA (NByte/Frame). The whole time of
reading frame (Tread) is shown in (5). The
time of configuration is approximately
estimated as Tconfig as shown in (6). Then the
complete time of reconfiguration task is the
summation of Tconfig and Treconfig as shown in
(7).

V. Experimental Results

 We use there the examples, up-counter,
LED display control, 16-bit divider and
32-bit divider to demonstrate the benefit of
proposed method. We can suspend the
operation of hardware task to switch the
context. We implement this work on Xilinx
XC2V1000 FPGA platform. In up-counter
design example, the BitGen (bitstream
generator) generates the logic allocation file
(.ll) as shown in Fig. 6. Through the logic
allocation file, we can observe locations of
the used resources in FPGA. We have used
28 registers and 4 frame addresses that are
built to database memory, as shown in
TABLE VI.

Two NOOP

Frame Data_2
Frame Data_1
Pad Frame_1

Set Word Count
(3 Frames)

Frame Address 1
Set FAR

Two NOOP

Two NOOP

Pad Frame_2

Frame Address 2

Frame Data_2

Set Word Count
(2Frames)

Set FAR
Frame Data_1
Pad Frame_1

Set Word Count
(2 Frames)

Frame Address 1
Set FAR

4 Frames
Time

3 Frames
Time

10 Commands
5 Commands

(a) Koester’s [2]

(b) Our proposed

Fig. 5. Comparison of frame address used
space

()[]
SelectMAP

cmStartclbcmFarcmRcfgCapcmShudow

cmread

f
NNNNN

T

_

4 +×++×

=
 (4)

 cmread
SelectMAP

FrameByteclb
read T

f
NN

T _
3

+
×

= (5)

SelectMAP

FrameByteclb
config f

NN
T

×
=

22
 (6)

cmread

SelectMAP

FrameByteclb

configreadreconfig

T
f

NN

TTT

_

25
+

×
=

+=
 (7)

We only need to save two frame addresses to achieve reading data of all registers.

 9

Because of the time of swapping and
reconfiguration is an important
consideration for the reconfigurable system.

The swap-out simulation of the design
example of up-counter is shown in Fig. 7.
The frame address 1, frame address 2 and
registers data in Fig. 7 are saved in database
memory. The swap-in simulation of
up-counter is shown in Fig. 8. The Fig. 8(a)
shows bit index places of registers that
initial frame address is 0x00140200 and the
Fig. 8(b) shows second frame address
0x001a0200 that both are read from
database memory. When operating swap-in,
the bitstream of up-counter will be
downloaded to FPGA again. Therefore, after
reading frame addresses, these register
values of state memory will be restored to
corresponding FPGA registers.

Because of Kalte [1] used the Virtex
series FPGA, therefore, we suppose that
Kalte’s method [1] needs 18-bit (non 1-bit
slice) in Virtex-II FPGA to save the
parameters of frame address and bit index

Fig. 6. Logic allocation file of up-counter

Fig. 7. The swap-out simulation of
up-counter

TABLE VI. Memory content of up-counter in database

Memory Address Memory Data (Context Data) Description

0 0000101001 Frame address (0x00140200)

1 1111001111 The register address in slice X15Y79

2 1101001111 The register address in slice X14Y79

3 0000110101 Frame address (0x001a0200)

4 1101001111 The register address in slice X20Y79

5 1101001110 The register address in slice X14Y78

6 1101001101 The register address in slice X20Y77

7 1101001100 The register address in slice X20Y76

8 1101001011 The register address in slice X20Y75

9 1101001010 The register address in slice X14Y74

10 1101001001 The register address in slice X20Y73

11 1101001000 The register address in slice X20Y72

12 1101000111 The register address in slice X20Y71

13 1101000110 The register address in slice X14Y70

14 1101000101 The register address in slice X20Y69

15 1101000100 The register address in slice X20Y68

 10

for each register (8-bit x column, 8-bit y row,
1-bit XQ or YQ and 1-bit current state of
register). TABLE VII shows the comparison
of our method with Kalte’s [1] in memory
usage for four different hardware tasks. The
memory usage of Kalte’s [1] method linearly
increases while ours can be reduced
averagely about 49.67%.

Our design examples are implemented on
XC2V1000 FPGA. Therefore, the frame
length is 424 bytes and the configuration
frequency of SelectMAP is 50 MHz. The
experimental results are shown in TABLE
VIII, we have compared our method with
Koester’s [2] in the number of reading
frames which include the pad frames. The
time of read frame and reconfiguration
hardware are calculated, and our proposed
method can reduce the time of
reconfiguration task average about 4.011%.

VI. Conclusion

A hardware context switching method has
proposed to reduce the memory usage for
the hardware context switching in the
dynamically partially reconfigurable system.
It also can reduce the reading time of one
pad frame and setting command complexity
in Readback operation. Specially, our
architecture is completely implemented by
hardware. Comparison of related work,
experimental results show that our method
can reduce averagely 49.67% of memory
used for saving hardware context and 4.011

% of hardware reconfiguration time. In the
future, we will extend the management of
the priority and schedule of hardware task
that will improve resource usage in FPGA.

(a) Initial frame address

(b) Second frame address

Fig. 8. The swap-in simulation up-counter

TABLE VII. Comparison of memory size
 Methods

Design Examples
(Used Flip Flops)

Kalte [1] Ours Reduced

Up-Counter (28) 476 Bits 160 Bits 66.39%

16-bit Divider (40) 680 Bits 420 Bits 38.24%
LED Display
Control (46) 782 Bits 400 Bits 48.85%

32-bit Divider (73) 1241 Bits 680 Bits 45.21%

Average 49.67%

TABLE VIII. Comparison of reconfiguration time for saving and restoring context

Design Examples Up-Counter LED Display Control 16-bit Divider 32-bit Divider
Method Koester [2] Ours Koester [2] Ours Koester [2] Ours Koester [2] Ours

Total Frames to Read 8 6 36 27 40 30 56 42
Read Data (Byte) 3392 2544 15264 11448 16960 12720 23744 17808
Command (Byte) 164 124 444 264 484 284 644 364

Command Time(�) 3.28 2.48 8.88 5.28 9.68 5.68 12.88 7.28
Read Time(�) 71.12 53.36 314.16 234.24 348.88 260.08 48.76 363.44

Reconfig. Time(�) 444.24 426.48 1933.2 1913.28 2205.38 211.58 3099.6 2975.28
Reduced Treconfig 3.9978% 4.0096% 4.0265% 4.0108%

Average 4.011175%

 11

References

[1] H. Kalte and M. Porrmann, “Context
Saving and Restoring for Multitasking in
Reconfigurable Systems,” in
International Conference on Field
Programmable Logic and Applications,
pp. 223-228, Aug. 24-26, 2005.

[2] M. Koester, M. Porrmann and H. Kalte,
“Relocation and Defragmentation for
Heterogeneous Reconfigurable System,”
in International Conference on
Engineering of Reconfigurable Systems
and Algorithms, pp. 70-76, Jun. 26-29,
2006.

[3] S. Guccione, D. Levi and P. Sundararajan,
“JBits: A Javabased interface for
reconfigurable computing,” in 2th Annual
Military and Aerospace Applications of
Programmable Devices and
Technologies Conference (MAPLD), pp.
253-261, September 1999.

[4] H. Simmler, L. Levinson and R. Manner,
“Multitasking on FPGA Coprocessors,”
in 10th International Workshop on Field

Programmable Gate Arrays (FPL), pp.
121-130, Aug. 27-30, 2000.

[5] Xilinx, Inc. “Virtex-II platform FPGA
user guide,” Xilinx UG002, March 23,
2005.
http://direct.xilinx.com/bvdocs/userguide
s/ug002.pdf

[6] M. Hubner, C. Schuck and J. Becker,
“Elementary block based 2-dimensional
dynamic and partial reconfiguration for
Virtex-II FPGAs,” in 20th International
Parallel and Distributed Processing
Symposium (IPDPS), pp. 8, April 25-29,
2006.

[7] Xilinx, Inc. “Virtex series configuration
architecture user guide,” Xilinx
XAPP151, October 20, 2004.
http://www.xilinx.com/bvdocs/appnotes/
xapp151.pdf

[8] Xilinx, Inc. “Virtex FPGA series
configuration and Readback,” Xilinx
XAPP138, March 11, 2005.
http://www.xilinx.com/bvdocs/appnotes/
xapp138.pdf

