
1

The Schema of Interrupt Controller

Jih-Fu Tu

The Department of Electronic Engineering, St. John’s University, Taiwan

Abstract

Exceptions or interruptions control is the most challenging aspect while designing a
processor, and the hardest work of exception control is interruption among produces.
In this paper, we embedded an event controller (EC) into an RISC architecture
processor to handle when interruption occurring, then to reduce the latency time when
context switch between user program and kernel program. To analyze the
performance, we also compare the cost/performance（C/P） ratio and the C/P

improved ratio of the proposed processor in different entry number of a reorder
buffers.

Keyword: Event controller (EC), cost/performance (C/P), external interrupt, and
interrupt priority comparator.

1. Introduction

Exceptions or interrupts are an event that causes an unexpected change in control flow
and a temporary break in program execution, also. So the processor changes the
normal flow of instruction execution to handle another chore. The interrupts
commonly request I/O services or synchronize the processor with some external
hardware activity. An exception is an unexpected event from within the processor;
arithmetic overflow /underflow is an example of the exceptions. Exception handling is
a mechanism to flexibly and with low implementation cost handle exceptional events
in a way that doesn’t impact the execution of the common case.

When an interrupt or exception occurs, which changes the flow of control of a
program by means other than a branch instruction. They are triggered by the
activation of interrupt signals, which denoted by Int [i], i=0,1,2,3… The activation of
an Int [i] should result in a procedure call of a routine, this routine is called the
exception handler for interrupt i and should take care of the program signaled by the
activation Int [i].

The interrupts are initially created to handle unexpected events and to signal
requests for service from I/O devices. Detecting exceptional conditions and taking the
appropriate action is often on the critical timing path of a machine, which determines

2

the clock cycle time and thus performance [1,2].
When the interrupt call is made, the processor uses a dedicated interrupt stack. A

new frame is created for interrupt on this stack and a new set of local registers is
allocated to the interrupt procedure. The interrupted program’s current state is also
saved. Upon return from the interrupt procedure, the processor restores the interrupted
program’s state, switches back to the stack that the processor was using prior to the
interrupt and resumes program execution.

Since interrupts are handled based on priority, requested interrupts are often
saved for later service rather than being handled immediately. In this paper, we
proposed an event controller, called EC. The machine for saving the interrupt is
referred to as interrupt posting. On the EC, interrupt request may originate from
external hardware sources, internal exceptions from software.

To simulate and prove the EC that is available, the EC is constructed in DLX
pipeline architecture processor. Also, we compare the cost/performance of the
processor with EC to the DLX processor without EC.

The rest of this paper is organized as; in Section 2 we provide a detailed
procedure for exception processor, called EC. In section 3, we describe the algorithm
of the interrupt priority for EC. In Section 4, we analysis the simulation result and
compare the cost of the processor with EC to the processor without the CApro. Finally,
we remark that the conclusion and future works in Section 5.

2. The Structure for the Exception Processor

We consider interrupts belong to classes. 1) Program interrupts, sometimes referred to
as “traps”, “fault”, and “abort”result from exception conditions detected during
fetching and execution of specific instruction which is shown as Figure 1, such as,
numerical errors, i.e. overflow, and page faults. 2) External interrupts are not caused
by specific instructions and are often caused by source outside the currently executing
process which is shown as Figure 2, such as, I/O interrupts and timer interrupts [2].

The exception processor’s primary functions are to provide a flexible, low-latency
means for requesting and posting interrupts and to minimize the core’s interrupt
handling burden. The exception processor handles the posting of interrupts requested
by hardware and software source. The exception processor acts independently from
the core, compares the priorities of posted interrupts with the current process priority,
off-loading this task from the core.

If we want to design an exception processor and prove that it works, we must to
do the usual three things: 1) define what an exception mechanism is supported to do, 2)

design the mechanism, and 3) show that it meets the specification. To manage and

3

prioritize all possible interrupts, the EC integrates an on-chip programmable interrupt
controller.

Original process
runs

Original process
continues

Page fault
handler sends

request for page
to I/O system

Page fault occurs
and original process

is suspended

Original process
restarts

Time

Another process
starts

Requested page
becomes
available

Fig. 1. Program interrupts processing [1]

Original process
runs

Original process
continues

interrupt handler
runs

interrupt
occurs

interrupt is accepted
and original process

is suspended

original process
returns

Time

Fig. 2. Typical interrupt processing between instructions [1].

The EC architecture defines two data structure to support interrupt processing: the
interrupt table and interrupt stack (shown in Figure 3) [3]. The interrupt table contains
interrupt vectors for interrupt handling procedures and an area for posting software
requested interrupts. The interrupt stack prevents interrupt handling procedures from
overwriting the stack in use by the application program. It also allows the interrupt
stack to be located in a different area of memory than the user and supervisor stack.

EC
Interrupt table Interrupt

Handling
procedureInterrupt Vector

:

:
:

Interrupt Requests

Memory

Fig. 3. Interrupt handling data structure for EC [3].

3. The Interrupt Priority for EC

To provide transparent prioritization of the all possible interrupts, each interrupt

4

vector has into different levels of priority. Every interrupt request is associated with
interrupt vector in the interrupt table and has priority number. The lower vector
number is assigned the higher priority. When multiple interrupt requests are pending
at the same priority level, the highest vector number is serviced first.

The EC compares its current priority with the interrupt request priority to
determine whether to service the interrupt immediately or to delay service through an
interrupted comparator. The interrupt requests consist of external interrupt, i.e.
hardware interrupt, and software exception. When an interrupt request is detected,
then the interrupt is posted. Interrupt comparator compare the priority of the current
procedure to the requested interrupt to decide which to service by the core. The
interrupt request is serviced immediately if the interrupt request priority is higher than
the processor’s current priority. If the interrupt priority is less than or equal to the
processor’s current priority, the processor does not service the request then the lower
priority interrupt or exception is fall into pent.

The EC is consisted of several registers, named and addressed of the registers are
listed in Table 1, physical circuits, i.e., comparator and multiplex (shown in Figure 4).
Those registers form the SPR [0] to SPR [5] of the special purpose register file.

Control Unit of Core

Comparator

Software
priority
register

Priority
resolver

Interrupt
mask register

(MSK)

interrupt
detection

System
control

instructionRequesting
interrupts

Checking
pending

interrupts

Service
interrupts

Current
process
priority

External
source

Fig. 4. The Schema of interrupts/exceptions procedure [3].

5

EPC

Cause Reg.

Interrupt Mask
Reg.

Current
Peocess

Priority Reg.
Fault

ExceptionReg
.

Priority Comparator

data page fault

instruction page
fault

overflow NMI
ill

trap

undefined

external
interruptions

machine check
(bus error)

Causewrite
Intcause

From ALUout

EPCwrite

To PC

To control unit

To instruction cache

reset

Mux

return

01

To memory

Fig. 5. The structure of the event controller (EC).

3.1 The produce of handling interrupts for EC

In this section, we design the interrupt hardware of the EC. The data paths get in the
EC to collects the interrupt event signals and determines the interrupt cause.

The interrupt event signals are provided several pipeline stages; they are shown
in Table 2. All kinds of interrupted events generated by the data paths and the control
unit, but the stage in which a particular event is detected depends on the event itself.
For the different kinds of events, after the interrupt handler completes that the user
programs can be resumed in two ways: continue and abort.

When an interrupt, happened from external event or I/O device, or exception,
caused by software, is occurred an event signal is posted from the interrupted source
to the EC. When the EC receives this event signal, the following works are processed
in interrupt routine.

1. checks this event whether mask or not?
2. compares and decide which has the highest priority,
3. saves (push) the states of the source instruction from GPR to SPR,
4. switches context to the interrupt handler, kernel model,
5. calls the exception or interrupt, routine and execute,
6. if the interrupt routine is completed, switch context from interrupt handler to

user program,
7. returns (pop) the states of the source instruction from SPR to GPR, and
8. continues or aborts the original instruction.

6

TABLE 1. The definition special purpose register
Offset Name Meaning Description

0 ESR Exception status register Saved the old masked interrupt routines
1 ECA Exception cause register Stored the masked interrupt cause
2 EPC Exception program counter Store the address of exception instruction
3 Edata Exception data register Stored parameter of the exception handler
4 MCA Exception maskable register Enabled the maskable
5 SR Status register Stored the maskable interrupts
6 CMP Comparator Compared the priority to the events

TABLE 2. The specific for all kinds of exceptions
Interrupt event Signal stage pipeline Detected by which unit resume
System clock clock Any stage Kernel Abort
System Reset reset Any stage Kernel Abort
Power failure pw Any stage Kernel Abort
Machine check bus error Any stage Continue
Ill ill EXE Control unit Abort
Instr. misalignment imal IF IMC Abort
Data misalignment dmal MEX DMC Abort
Instruction page fault ipf IF IMC continue
Data page fault dpf MEX DMC continue
trap trap EXE Control unit continuer
Undefined instruction undefined ID Control unit Abort
Overflow ovf EXE ALU Abort
System call call ID ALU Continue
trace trace EXE Continue
I/O device external Any stage Interrupt processor Continue
Thread interrupt* ThInt Any stage Threaded dispatcher Restart
Note: the threaded interrupt occurs for multithreaded processor when threaded slot has exception. For a

threaded slot, the ThInt is defined an external interrupt for a threaded slot.

.
The above discussions of handler interrupt for the exception handler may be
summarized in the following algorithm that is shown in Figure 6.

Algorithm Inthandler /handler interrupts/
Input: none
Output: none
{
detect interrupt types;
post interrupt;
save (push) current context layer;
determine interrupt source;
compare interrupt priority;

find interrupt vector;
call interrupt handler;
repeat:
check interrupt whether complete or not ?
if (full=1)
jump repeat;

7

else
if (restart=1 || continue =1)
jump original;
else stop;
original:
restore (pop) previous context layer;

Fig. 6. The algorithm of handling interrupts for exception handler.

4. Analysis the Results and Costs

4.1 Modeling the EC Use Petri Net

We design the interrupt hardware of the exception handler. The data paths get in the
exception handler to collects the interrupt event signals and determines the interrupt
cause. Figure 7 shows fundamental structure of the Petri net of interrupt programs and
the user programs switch while occurs interrupt for processor. The symbol Ο
represents place, where Information is store, and │represents transition, which deals
with transactions. The Petri net is a new feature that the weights called firing weights
or introduced on the input arcs of the transitions and the signal called firing signal
move with the token, is stand for ●, transfer [5].

Hardware
interrupt
posted

Interrupt
detection
register

Interrupt
pending

Interrupt
maskable
register

Hardware
priority
resolver

Exception PC

PC
I- and D-
Memory

Exception
cause register

Return
Instruction/
data trigger

Current
process
priority

Interrupt
priority

comparator

Interrupt
vector

Control unit

ALU

ALUout

NPC
Interger trigger
(increment 4)

Interrupt
handler

completed

Posting
hardware
requested

Selectively
hardware
requested

Software
priority register

instruction
address
updated

Register files

Interrupt
handler

executed

Specify
purpose
register

Interrupt
gate

Posting
software fault

requested

Setting the
correspond
priority bit

Priority gate

Access

Flush

Opcode

Read

Complete

Event

Adder

Copied

exceptions
faultexceptions

fault

External
interrupt
generated

Fig. 7 The Petri net model of context switch between exception handler and user program.

8

4.2 Experiment the EC

In this section examines the performance benefits of using a dedicated entry to reduce
overhead. To demonstrate the performance benefit of the exception handling for the
EC, we experiments several exceptions and have implemented four kinds of entries
using reorder buffer design logic. This research is performed using MIPS of the
SimpleScalar tool kit [4], version 2.0. We chose SPEC CPU95 benchmarks, which are
lists in Table 3, to compare the performance of different architectures. The produce of
this simulation tools as following example.

Sim-outorder <command line switches> <benchmark binary> <benchmark
command line>
Example : sim-outorder –config **.cfg –redir:sim ***.out /../go.ss 50 21
/../9stone21.in [7]

We obtained a simulate result via the ***.out file. If we want to progress the
SPEC benchmark, we must have the SimpleScalar 2.0 and SPEC CPU95 or SPCE
2000 benchmark license. The benchmark binary is offers by SimpleScalar 2.0 and the
benchmark command line is supplied by the SPEC benchmarks.

4.3 The IPC for Different EC Size

Figure 8 shows the IPC (Instructions per cycle) for four different event controller’s
entries in 4 thread slots across the benchmark suits. Refer to Figure 8, excepting the
perl benchmarks, we obtain that the highest improve for IPC of each benchmark is
happened in 8-entry. Though we increase the reorder buffer size of EC to 16-entry, the
IPC does not be improved. This reason cause of the more entry number has the more
copied time between general-purpose register (GPR) to specific purpose register (SPR)
when an interrupt occurs and interrupt handler completed.

When the value of reorder buffers is small than 8-entry, the EC have expended
long time in maintaining the exception data and status of exception data buffer
(Edata), thus the CPU performance is reduced and the IPC does not be improved, too.

Obtaining the speedup ratio, the performance has clearly improved while the
size of EC is 8-entry. For the benchmarks of compress and ijpeg, the IPC is up to 2.3.

9

0

0.5

1

1.5

2

2.5

apsi compress m88 tomcatv su2cor perl ijpeg vertex

Benchmarks

IPC 2-entry 4-entry 8-entry 16-entry

Fig. 7. The IPC when different entry’s sizes in EC.

4.4 The Cost of EC

In this subsection, we compare the cost/performance (C/P) ratio for different entry
number for the EC. The performance-improved ratio for each entry is defined: the
latency time of 2n-entry –the latency time of 2n+1-entry. The cost is defined the
incremented entry number. In Table 3 illustrates the latency time of the EC for
different entry numbers. Through the above formal calculates the C/P, which are listed
in Table 4.

Observe to the benchmarks of Table 4, we found the best C/P ratio that occurred in
4 entries of EC. For compress benchmark, the maximum C/P is 1.3808 (referring to
the third column of Table 4) and its C/P improvement ratio is 21% (the value of third
column –the value of second column, i.e., (1.308-1.0957)/1,0957). The C/P ratio of
other benchmarks, such as apsi is 73.3%, m88 is 13.7%, tomcatv is 84%, perl is
16.8%, and ijpeg is 16.2%, respectively.

TABLE 3. The latency time of different entry for EC
Entries

Benchmark
1 2 4 8 16

Apsi 4.863 4.6515 2.7621 2.5177 2.5457
Compress 7.323 6.2273 3.6111 3.4389 3.4389
M88 4.672 4.2685 3.1868 2.6101 2.6105
Tomcatv 4.938 4.7864 2.7962 2.6808 2.6808
Su2cor 3.043 2.1578 1.6676 2.4112 2.4112
perl 5.156 4.6515 3.3165 2.2129 2.5751
ijpeg 3.845 3.5678 2.6681 2.7423 2.7428
vertex 2.946 2.6113 2.3095 2.5247 2.5247

10

TABLE 4. The cost/performance (C/P) ratio for EC
Entry increase 1increase to 2 2 increase to 4 4 increase to 8 8 increase to 16
aspi 0.2115 0.945 0.06 -0.0035
compress 1.0957 1.308 0.045 0
M88 0.4035 0.541 0.144 -0.0005
tomcatv 0.1516 0.99 0.026 0
Su2cor 0.8852 0.5 -0.19 0
perl 0.505 0.668 0.275 -0.045
ijpeg 0.278 0.45 -0.019 -0.0006
vertex 0.3347 0.151 -0.056 0

5. Conclusions and Future Works

In this paper, we introduce events control, EC, an architecture that increases event
control performance. We evaluate this assumption control with SimpleScalar 2.0
simulation tool suits. Though the highest performance obtains from 8-entry EC
architecture; the best cost/performance for different EC entry is 4-entry. The best
cost/performance (C/P) is 1.308 that occurred in compress’s benchmark and the best
C/P improvement ratio is 84%, which occurred in tomcatv’s benchmark.

For the future works, this topic has much rooms to work, such as, comparing the
performance for different logical architectures, which are in-order method, history
buffer, and future buffer, and explicit the EC architecture to control the exceptions
among threads for multithreaded processor.

References

1. Silvia M. Mueller and Wolfgang J. Paul, “Computer Architecture Complexity and
Correctness,”Springer, 2000.

2. David A. Patterson and John L. Hennessy, “Computer Organization & Design the
Hardware/Software interface,”Morgan Kaufmann publishers, Inc. 1997.

3. Intel Corp., “Intel Pentium Processor User’s Menu,”Intel Corp. Lim., 1999.
4. D. C. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,”

Technical Report CS-TR-97-1342, University of Wisconsin-Madison, June 1995.
5. T. Murata, “Petri nets: Properties, Analysis and Applications,”Proc. IEEE, Vol, 77, No. 4, 1989, pp.

541-580.

6. E. Rotenberg, Q. Jacobesn, and J. Smith, “A Study of Control Independence in
Superscalar Processors,” In proc. Of the 5th International Symposium on
High-Performance Computer Architecture, January 1999.

7. SimpleScalar Mailing List Architecture, “Re: Inquiring about Spec95,”
http://ord.eecs.umich.edu/ss_archives/0093.html, pp. 1-4.

