

1

Cycle Stealing Buffers and Physical Channel Management Scheme

for Wormhole Based On-chip Networks
Jwo-An Lin, Yung-Chou Tsai, Yarsun Hsu

Department of Electric Engineering, National Tsing Hua University, Hsinchu, Taiwan
Email: yshsu@ee.nthu.edu.tw

Abstract

With the improvement of chip manufacture process, a
single chip may contain many processor cores and
functional units. These cores and functional units
communicate with each other through an on-chip
interconnection network. Therefore, a key issue in the
design of multi-core chip is how to construct a low
latency high bandwidth on-chip interconnect.

In this paper, a cycle stealing buffer and a physical
channel management scheme are proposed for the design
of on chip networks. The cycle stealing buffer can reduce
the number of cycles in reading and writing a network
buffer. The physical channel management scheme can
efficiently multiplex and arbitrate the physical channel
among many virtual channels. These two methods can be
adopted in wormhole based networks to improve both
latency and throughput. In this paper, by use of
simulation, we study the feasibility and benefits of these
two methods using a wormhole based ring network.

Index Terms— on chip network, cycle stealing buffers,
physical channel management scheme

1. Introduction

ith the advance on electronic systems, the demand
for more computing power has never stopped.

Although the performance of processors has doubled in
approximately every three-year span from 1980 to 1996,
the complexity of applications has continuously driven
the development of even faster processors. However,
boosting the performance of processors becomes very
complex and expensive, only a few companies all over
the word can afford it. Therefore multi cores had been
proposed as an alternative approach.

In this approach, several processor cores and
functional units can cooperate to solve a large problem.
Therefore, designing high performance interconnections

becomes a critical issue to exploit the performance of
multi-core system [1].

Thanks to the evolution of integrated circuit
technology, a single chip may contain a large set of
processing units and numerous IPs. This makes multi
processor system on chip (MP-SoC) possible and
provides integrated solutions to challenging design
problems in lots of domains, such as telecommunication,
multimedia and consumer electronics [2].

A critical issue for MP-SoC design is the
interconnection between processing units and
heterogeneous functional units [3]. Efficient
interconnection is necessary for these elements to
cooperate with each other. MP-SoC was developed for
high-performance computation, such as image
processing. For example, “Emotion Engine” proposed by
Sony [4], and “Cell Processor” proposed by IBM [5],
where on chip interconnection efficiency is the key to the
overall system performance.

For an interconnection design in MP-SoC,
synchronization with a single clock can be extremely
difficult. Though gate delays scale down with technology,
global wire delays typically increase exponentially or, at
best, linearly by inserting repeaters. Even after repeater
insertion, the delay may exceed the limit of one global
clock cycle [6]. Even more, in ultra-deep submicron
processes, more than 80 percent delay will come from the
interconnection wires [7].

In the last decades, one of the most frequently used
on-chip interconnection is the shared medium bus; this
interconnection architecture serializes requests from any
master units connecting to the bus, forces each
transaction to complete before next transaction can begin.
As a result, the interconnection efficiency decreases
severely when the number of masters increases, this
limits the number of processing units and functional IP
blocks that can be connected to a bus and thereby limits
the system scalability. Several solutions for such case
were proposed, based on splitting the bus into many
separate local segments. By introducing a hierarchical
architecture and the concept of global asynchronous and
local synchronous (GALS), modules in a particular
segment can exchange data independent of modules in
other segments at a locally defined speed, and access the

W

2

global bus through self-timed interface [9] [10]. However
this bus-based system has the inherent limitations, as all
attached devices must share the bandwidth of the bus.
Also, the performance degrades due to the bus parasitic
capacitance and the complexity of arbitration.

To overcome these problems, a network-based
interconnection approach was proposed. In this approach,
the communication among units can take place in the
form of some pre-defined logical units, such as message
or packet. With the assist of network components, such as
router, switch … etc, units connected to the network can
exchange their information. This approach resembles the
network of multi-processor system, and is well known as
“On-Chip Networks”.

Unlike other networks, such as internet or
multi-computer cluster system network, on-chip network
has much more design constraints due to the physical
characteristic of a chip. It is not feasible to think that
on-chip network equates to porting the Transmission
Control Protocol/ Internet Protocol (TCP/IP) to silicon or
achieving an on-chip Internet, due to the high latency and
complexity of TCP/IP. [11]

For on-chip network design, the network must be
simple enough. Complex network may lead to complex
design issues, therefore increase the hardware
complexity of each network component. With the
increase on hardware complexity, network area and
power consumption also increase, thereby reducing the
overall network performance. Moreover, an on chip
network must conform to on chip wiring constraints.
Long wring paths may lead to huge parasitic resistance
and cause a large wire delay. Crossover wirings in
different metal layers may lead to parasitic capacitance
and cause signal crosstalks A design tradeoff between
hardware cost and network performance must be handled
carefully. Therefore, in this paper, the cycle stealing
buffers and the physical channel management scheme are
proposed for wormhole on-chip networks. These
methods can be easily adopted in wormhole on-chip
networks which improves the overall network
performance under the chip design constraints.

We describe our cycle stealing buffer design and
physical channel management scheme in section 2 and 3
respectively. In section 4, we adopt these two methods in
the design of a ring based network. We then describe the
simulation environment in section 5. Section 6 and 7
show the simulation results using these methods. Finally
we conclude our study in section 8.

2. Cycle stealing buffers

As we mentioned earlier, on-chip network has much
more constraints than conventional network designs.
Most of them come from the physical characteristic of a
chip. Under these constraints, designers must optimize
the network carefully. Otherwise the optimization may
incur a huge cost on hardware and become infeasible.

Since network buffers are necessary components for
every network node, their designs will severely influence
the overall network performance. We can estimate that a
small performance improvement in network buffer will
induce a large performance improvement in overall
network.

In today’s network designs, most of them adopt the
first in first out (FIFO) architecture as their storage buffer.
In this section, we will briefly discuss the conventional
FIFO architecture and its behavior. Then, the cycle
stealing buffers are proposed, which improves the
network performance with only a small extra cost.

2.1 Conventional One Port FIFO

A conventional one port FIFO shown in Fig. 2.1 is
composed of two data pointers (read and write), some
necessary control elements and lots of storing units. This
module includes one bidirectional bus for data transfer,
two status output signals (full and empty) which show the
FIFO state and four control signal inputs (clock for
synchronization, reset for buffer refreshment, and
read/write for data access control).

 clock

reset
read
write

buffer
1

buffer
0

buffer
n

full
empty

data

buffer
2

buffer
3

buffer
4

buffer
5

rw

Fig. 2.1 Block diagram of a conventional one port

FIFO

This architecture can implement a first-in-first-out
storage function using the smallest number of IO pins and
control signals [13]. If the hardware area constraint is
severe and the performance requirement is not critical,
this FIFO architecture may be a good solution for NoC
buffers and can be easily adopted.

2.2 Conventional Two Port FIFO

As described in the previous section, a conventional
one port FIFO can be easily adopted as storage units in
on-chip networks. However, this architecture has a
limitation that only one data command, read or write can

3

be processed in every cycle. As a network buffer, this
disadvantage will become a problem because it can’t
store and forward data information at the same time.
Packets flowing in the network may be blocked
frequently, waiting for the FIFO to finish its previous
data transfer command. Lots of cycles are wasted due to
this IO resource limitation, thus it becomes important to
solve this problem. Therefore we add another data port,
that is, two data ports in this module, one for data input,
another for data output as shown in Fig. 2.2.

 clock

reset
read
write

buffer
1

buffer
0

buffer
n

full
empty

data_out
buffer

2
buffer

3
buffer

4
buffer

5

rw

data_in
Fig. 2.2 Block diagram of a conventional two port

FIFO

While the FIFO is not full or empty, user can write data
into the FIFO buffer and read data from the FIFO
simultaneously. No extra delays on contention for the
data bus resource and the chance for packets to be
blocked decreases. Without other conditions, packets can
flow trough the network in a pipeline fashion.

2.3 Conventional FIFO Behavior

In this section, we would like to discuss the
conventional FIFO behavior when switching from a full
state to a non-full state and its shortcoming.

Fig. 2.3 shows a FIFO read/write example. In this
example, we are going to discuss the behavior of a
conventional FIFO design when switching from a full to
a non-full state.

In cycle 1, a write event is declared by asserting the
write signal and the data input. However, the FIFO is full
and the data is not written into the FIFO in this cycle. In
cycle 2, a read event is declared by asserting the read
signal. Because the write process is not finished in cycle
1, the write signal remains high. In this cycle, data_0 is
successfully read, therefore the data output is data_0.
After this read process, the FIFO has one empty space,
and the full signal is also reset. Since the FIFO is not full,
the write event declared in cycle 1 can write data into the
FIFO in cycle 3.

data_0 data_1 data_2 data_3

read
write

data_in

0
1
4

full
empty

data_out

1
0
Z

r w

data_0 data_1 data_2 data_3

read
write

data_in

1
1
4

full
empty

data_out

0
0
0

rw

data_4 data_1 data_2 data_3

read
write

data_in

0
1
4

full
empty

data_out

1
0
Z

r w

Original FIFO behavior

Cycle 1:
Write data (4) into the FIFO

Cycle 2:
Write data (4) into the FIFO

Read data from the FIFO

Cycle 3:
Write data (4) into the FIFO

Commands in each cycle

Fig. 2.3 An example of conventional FIFO behavior

2.4 Cycle Stealing Buffer Behavior

From the above example, we can recognize that the
FIFO has to change its state from a full state to a non-full
state in cycle 2, and then the data can be written in cycle 3.
With this FIFO behavior, it induces an extra cycle delay
every time when the buffers are full.
In order to fix this problem, we proposed a new design
concept, which eliminates the extra cycle delay as Fig.
2.4 shows.

data_0 data_1 data_2 data_3

read
write

data_in

0
1
4

full
empty

data_out

1
0
Z

r w

1
0
0

New FIFO behavior

Cycle 1:
Write data (4) into the FIFO

Cycle 2:
Write data (4) into the FIFO

Read data from the FIFO

Commands in each cycle

data_4 data_1 data_2 data_3

read
write

data_in

1
1
4

full
empty

data_out

r w

Fig. 2.4 The behavior of a cycle stealing buffer

The same as in previous example, a write event is

declared in cycle 1, and the data is not written into the
FIFO since the FIFO is full. In cycle 2, there is a new read
event declared, so there are two events: a write and a read
ready to be processed. Instead of waiting for the state
transition from a full state to a non-full state, we can let
both events be processed at the same cycle. That is, to
read out the old data (data_0), and then write in the new
data (data_4), just like what a single Flip Flop works. By
using this concept, we can reduce the extra cycle wasted
on an un-necessary state switching.

Although we have increased the buffer design
complexity slightly, the buffer is still less complex than
other network components and will not impact the
network operation frequency.

4

3 Physical channel management scheme

The most expensive resources in network design are
physical channel bandwidth associated with
communication links and buffer space associated with
each channels. Therefore, most current network designs
use wormhole switching technique to efficiently use
these expensive resources.

In wormhole switching networks, once a packet
occupies the buffer of a physical channel, no other
packets can access the physical channel. If this packet is
blocked, the physical channel resource will be wasted. In
order to increase the physical channel efficiency in
wormhole network, a physical channel may be divided
into several logical or virtual channels [14]. Logically,
these virtual channels operate as distinct physical
channels with a lower speed. Physically, packets at
different virtual channels share the resource of that
physical channel. With this method, a blocked packet
stored in a certain virtual channel’s buffer won’t occupy
the whole resource of the physical channel.

Virtual channels can also be used for deadlock
prevention algorithm. By virtualizing the escape
channels [15], which break the cyclic channel
dependencies, the number of physical channels can be
reduced and no extra cost incurs on inter-node wiring
when deadlock prevention algorithm is adopted.

In the following section, the conventional virtual
channel implementation scheme is briefly described first.
Then we will propose a physical channel management
scheme to efficiently manage the physical channel
resource among multiple virtual channels in wormhole
on-chip networks using virtual channels.

3.1 Conventional virtual channel multiplexing

A conventional virtual channel multiplexing is the
flow control that can be easily adopted in wormhole
based on-chip networks using virtual channels. It equally
assigns the physical channel resource to those virtual
channels across it. Each virtual channel uses the physical
link for one clock cycle only and has to wait until all
other virtual channels have used the link. These virtual
channels share the physical channel in a round robin
fashion. This method can be described by a selection
function:

[Owner ID = (cycle count) mod (n)]
 In this selection function, n represents the total

number of the virtual channels and each of these virtual
channels can operate as 1/n speed of the physical channel.
Since the transfer speed of each virtual channel is fixed,

no extra control is needed in this implementation method.
To implement the conventional virtual channel

multiplexing, a multiplexer and a de-multiplexer are
added on different end of a physical channel and a
selector is added to implement the selection function, as
Fig. 2.1 shows.

MUX

selector

DE-
MUX

physical
channel

virtual channel 2
virtual channel 3

virtual channel 1

virtual channel 4

virtul channels

Fig. 3.1 Virtual channel implementation block

diagrams

In conventional virtual channel multiplexing,
although the flexibility and efficiency of physical
channels has increased; a blocked packet stored in a
certain virtual channel’s buffer won’t occupy the whole
resource of the physical channel. However, the speed of
each virtual channel also decreases significantly
according to the number of virtual channels [1]. This
decrease in speed will become a bottleneck for using
virtual channel.

To solve this problem, we need to analyze the transfer
state of virtual channels in different kind of situations.

3.2 The transfer state of virtual channels

 First, we assume an ideal case that all of the virtual

channels across one physical channel are ready to send
packet, and these packets will not be blocked in the future.
In this ideal case, the utilization rate of the physical
channel is 100%, thus the speed of these virtual channels
across it can not be further increased.

However, the ideal case mentioned above is just a
sparse event. Most of the time, not every virtual channel
across the physical channel is ready to transfer data
through it. Some of the virtual channels may not buffer
any packet; or it may buffer a packet which will be
blocked in the future. Under these circumstances, if we
just equally assign the physical channel resource to every
virtual channel, the resource may be assigned to a virtual
channel which is not ready to transfer data through it,
causing a waste on physical channel resource. Therefore,
how to assign the physical channel resource among these
virtual channels becomes an important issue.

Instead of equally sharing the physical channel
resource, we can make a resource arrangement according
to the statistic traffic information. We can assign more
usage time to these virtual channels with higher traffic
loads. However, this pre-determined resource

5

arrangement method may just meet the requirement of a
certain traffic pattern. When the applied traffic changes,
it may perform worse than the conventional virtual
channel multiplexing.

3.3 Physical channel management scheme

Since the pre-determined resource arrangement
method is not a good solution, we try to adaptively
arrange the physical channel resource according to the
run time traffic information about each virtual channel
and to make the utilization rate as high as possible.
However, collecting the global run time traffic
information is not an easy problem. The time needed to
process and apply this information on resource
assignment may also cause the traffic information to be
out of date, making the resource assignment not suitable
for the current traffic load. In addition, the hardware
needed to implement this method will also become a
bottleneck.

For these reasons, we propose an idea to collect the
run time local traffic information, and immediately apply
it to the resource assignment method. Since the
processing time is short, this resource arrangement
should be much more efficient.

The run time local traffic information can be collected
by viewing the state of each virtual channel and its
destination buffer. If there isn’t any packet in a virtual
channel’s buffer, we can conclude that this virtual
channel will not send a packet through the physical
channel in the next clock cycle; therefore there is no need
to assign the physical channel resource to it. Besides, if a
packet exists, but the destination buffer is full and
blocked, this virtual channel cannot send a packet
through the physical channel in the next clock cycle and
therefore there is no need to assign physical channel to it
either. By not assigning physical channel resource to
those virtual channels that have no data to transfer and
those their destination buffers are full and blocked, we
can prevent unnecessary wastes on physical channel
resource.

In addition, by viewing the buffer state of each virtual
channel, the physical channel management scheme can
also assign more physical channel resource to those
virtual channels with higher traffic loads. This also
reduces the congestion problem due to hot spot and
improves the overall data transfer efficiency.

4 Applying these methods to wormhole
based ring network

In this section, the cycle stealing buffers and the

adaptive physical channel management scheme are
adopted in a wormhole based ring network design as
shown in Fig. 4.1. We use ring network for our initial
study because it has been used in IBM’s Cell
processor[5].

Network
Node0

Functional
Unit0

Network
Node1

Functional
Unit1

Network
Node2

Functional
Unit2

Network
Node3

Functional
Unit3

Network
Node4

Functional
Unit4

Network
Node5

Functional
Unit5

Network
Node6

Functional
Unit6

Network
Node7

Functional
Unit7

Network
Node8

Functional
Unit8

Network Design
Fig. 4.1 A rough diagram of ring topology network

4.1 Network node design in wormhole based
ring topology networks adopting cycle
stealing buffers

In order to break the deadlock anomaly resulting from

the possible cyclic channel dependencies in a ring
topology network, an extra escape channel is added to
connect the neighbor nodes [15]. In addition, there are
two physical channels connecting to each node, one for
data injection from functional units, another for data
consumption by functional units.

In this network design, we assume a buffer is
associated with each channel for storing messages in
transmit and an extra buffer for data injection.

In each network node, we use a router to determine
the path for the packets stored in different buffers and an
arbiter to decide which packets will be granted to use the
physical channel. These modules can co-operate to
maintain the path for each incoming packet and support
simultaneous access of different channels. The block
diagram of the network node is shown in Fig. 4.2.

FIFO
channel

FIFO
escape channel

Arbiter
PIreq_1

PIreq_2

PIdata_1

PIdata_2

Router

POdata_1

POdata_2

POfull_1

POfull_2

PIfull_1

PItrans_2

PItrans_1

PIfull_2

POreq_1

POreq_2

POtrans_1

PO
data_3

PItrans_3
PIfull_3

PO
req_3

FIFO
injection queue

PIreq
PIdata
PO

full

POtrans_2

PO
trans

Fig. 4.2 A network node block diagram for ring
topology network adopting cycle stealing buffers

The IO ports of this block diagram are described in Table

6

4.1.

Table. 4.1 IO port description of Fig. 4.1
IO Ports description
PIreq shows a write request from functional unit
PIreq_1 shows a write event from channel 1
PIreq_2 shows a write event from escape channel
PIdata data input from functional unit
PIdata_1 data input from input channel 1
PIdata_2 data input from input escape channel

PIfull_1
shows a full state from right hand side node
FIFO channel, which is the destination
FIFO for output channel 1

PIfull_2
shows a full state from right hand side node
FIFO escape channel, which is the
destination FIFO for output escape channel

PIfull_3
shows a full state from functional unit
buffer, which is the destination FIFO for
output physical channel to functional unit

PItrans_1
shows a transfer state from next state’s
FIFO channel, which is the destination
FIFO for output channel 1

PItrans_2

shows a transfer state from next state’s
FIFO escape channel, which is the
destination FIFO for output physical
channel 2

PItrans_3
shows a transfer state from functional unit
buffer, which is the destination FIFO for
output physical channel 3

POfull declare a full state of FIFO injection queue
POfull_1 declare a full state of FIFO channel
POfull_2 declare a full state of FIFO escape channel
POtrans declare a read state of FIFO injection queue
POtrans_
1 declare a read state of FIFO channel

POtrans_
2 declare a read state of FIFO escape channel

POreq_1 declare a write request to channel
POreq_2 declare a write request to escape channel
POreq_3 declare a write request to functional unit
POdata_1 data output to channel 1
POdata_2 data output to escape channel
POdata_3 data output to functional unit

By using the state signals (PItrans, PIfull …etc) from

the neighbor node on the right hand side, the current node
can determine the state of the destination buffer. If this
buffer is transferring data, no matter it is full or not, a
granted buffer at current node can start transmitting data
through the physical channel to the destination buffer on
the next node.

Since the buffer state at current node may also
influence the data transfer of the left hand side neighbor

node, which wants to send data to current node.
Therefore, output state signals (POtrans, POfull …etc)
describing the state of each buffer, must be sent to the left
hand side node too. Using this network node architecture,
we can realize the cycle stealing buffer concept proposed
earlier.

4.2 Network nodes adopting cycle stealing
buffers and physical channel management
scheme

To realize the physical channel management scheme

in a ring topology network, we virtualize the escape
channels which break the cyclic dependency and add two
modules in each network node as Fig. 4.3 shows.

FIFO
channel

FIFO
escape channel

Arbiter
PIreq_1

PIreq_2

PIdata_1 Router

POdata_1

POfull_1

POfull_2

PIfull_1

PItrans_2

PItrans_1

PIfull_2

POreq_1

POreq_2

POtrans_1

PO
data_3

PItrans_3
PIfull_3

PO
req_3

FIFO
injection queue

PIreq
PIdata
PO

full

POtrans_2

PO
trans

Physical
channel

management
controller

De-
selector

Fig. 4.3 A network node design for ring topology

network adopting cycle stealing buffers and physical
channel management scheme

The physical channel management controller can

select one of the virtual channels which can transfer data
through the physical channel, and skip those unable to
transfer. Thus, the physical channel resource won’t be
wasted, and the utilization rate of physical channel can be
higher than just equally assigning the physical channel
resource to every virtual channel across it. In addition,
the controller can also assign more physical channel
resource to virtual channels having more ready-to-send
packets on their buffers.

The de-selector is a de-multiplexer device, which can
pass the incoming data to their destination buffer using
the information from sender’s physical channel
management controller module.

In this network node architecture, we have
encountered some problems. Most of them come from the
irregular transfer state of network buffers resulting from
adaptive physical channel resource management. A
buffer sharing more physical channel resource with
others will have longer transfer time across the physical
channel. To prevent data miss or duplication due to the
irregular transfer state of network buffers, we have added
some control signals and functions in each network
component, balance the data transfer among all network
buffers to prevent data miss or duplication. We also

7

consider this irregular transfer state of network buffers in
our adaptive resource management scheme and maintain
the physical channel efficiency as high as possible.

5 Simulation environment & performance
matrix

5.1 Simulation environment

To verify our network design and measure the
network performance, we need a simulation environment
that can provide cycle accurate RTL level behavior
model, which describes the detail behavior of each
network component. In addition, we also need a
simulation environment that can support statistic
measurement analysis. Therefore a hardware description
langue, like Verilog, can not satisfy our need. Although it
can describe the detailed behavior of a hardware
component in a cycle accurate way, it can not easily
support complex statistic measurement analysis.

Besides Verilog, a high level programming language,
such as C++, can’t describe the detailed behavior of a
hardware component, thus, these languages won’t satisfy
our need either. For these reasons, we try to build up the
simulation environment using SystemC.

SystemC is a C++ class library and a methodology
that can be used to effectively create a cycle-accurate
model for software algorithms, hardware architecture,
interfaces of SoC and system-level designs. The SystemC
class library provides necessary constructs to model
system architecture including hardware timing,
concurrency, and reactive behavior that are missing in
standard C++ [16]. SystemC also supports C++ library
which provides us a convenient environment for statistic
measurement analysis on network performance. Due to
these characteristics, we adopt SystemC to set up our
simulation environment to implement, verify, and
measure our network design.

Methods about how higher level layer protocols are
implemented are less critical on the network performance
than other network design issues. So, in our simulation
environment, we will assume that data have already
finished their high level layer protocols, like data
encryption or data packetization. With this point of view,
an abstract class called ‘Flit’ was built, which contains
the necessary information for network simulation such as
message number, packet number, flit injection
time, …etc. With this abstraction, we can build up a
packet class, and a message class in different size.

For high level system abstraction, we let the Flit size

equal to the Phit size. By definition: a flit is the logical
unit of information that can be transferred across a
physical channel in a single cycle. We can also abstract
the physical channel width to one flit size.

After creating these system level abstractions, we are
going to design a traffic generator module that can
generate network traffic in these abstract formats. For a
general case study on network performance, we model a
traffic generator which generates messages using a
Poisson process with an adjustable injection rate at each
node This helps us to achieve a fast and general
simulation [2].

5.2 Performance metrics

For network performance evaluation, designers have to
define the network performance matrix. In this section,
we will briefly describe the performance matrix for our
network performance evaluation.

1. Accepted traffic (Flits): total flit numbers that can

travel from source to destination during the
simulation period.

2. Accepted traffic per node (Flits): accepted traffic
divided by total network node numbers in network.

3. Throughput (Flits): the maximum amount of
accepted traffic.

4. Flit latency (cycles): cycles needed from flit
injection to flit consumption.

5. Average flit latency for node n (cycles):

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
∑
=

nnodebyacceptedflitsofnumbertotal

nconsumptiotoinjectionflitfromneededCycle
numberflit

k
k

_

0

6. Overall average flit latency (cycles):

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ ∑
=

numbernode

nodeforlatencyflitaverage
numbernode

n
n

_

_

0

7. Applied load for generator n (Flits/cycles):

⎥
⎦

⎤
⎢
⎣

⎡
cyclessimulationtotal

ngeneratorbygeneratedflitsofnumbertotal
__

Using these definitions, the applied load value shows
the injection rate of the generator. For example,
applied load of 1.0 means that the generator will
generate a flit in each cycle; applied load of 0.5

8

means that the generator will generate a flit in every
two cycles.

6 PERFORMANCE EVALUATION OF CYCLE
STEALING BUFFERS

6.1 Performance comparisons between two ring
networks adopting different buffer
architectures

In this section, we would like to show the

performance comparisons between two ring topology
networks adopting different buffer architectures. One of
the architecture is the conventional two ports FIFO, the
other is the cycle stealing buffer architecture.

In these performance evaluations, we let other
network issues, such as topology, routing, switching
method…etc be fixed, and try to make fair comparisons
between two different buffer architectures. Those fixed
network issues are described in Table. 6.1.

Table. 6.1 Fixed network parameters for
performance evaluations between two ring networks
adopting different buffer architectures.

 Message
Size

Packet
Size Flit size Number

of nodes
Fixed
value 1 packet 4 Flits 1 Phit 9

 Topology Switching Routing FIFO
size

Fixed
value Ring Wormhole Deadlock

prevention
4

Flits

 Arbitration
method

Simulation
Cycle

Fixed
value

Weighted
round robin 100000

The simulation results about average flit latency for

the networks adopting different buffer architectures in
different applied load per node are shown in Fig 6.1.

Fig. 6.1 Average flit latency comparison between two
ring networks adopting different buffer architectures

In this figure, we can see that the average flit latency

of the network adopting cycle stealing buffer architecture
is smaller than the network adopting conventional FIFO
architecture, especially when the applied load grows
larger. With a very small applied load, the two designs
have about the same average flit latency. This is expected
since each buffer in the networks will never be full.

As a result of average latency reduction, we can
expect that the maximum accepted traffic will also
improve. These simulation results about accepted traffic
for the ring network adopting different buffer
architectures are plotted in Fig. 6.2.

Fig. 6.2 Accepted traffic/node comparison between

the ring networks adopting different buffer
architectures

From this figure, we can see that there is a large gap in

the maximum accepted traffic per node between these
two different buffer architectures as the applied load
increases. The network adopting conventional FIFO
architecture peaks at a smaller applied load than the
network adopting cycle stealing buffer architecture. In

9

addition, when the applied load is further increased, the
accepted traffic starts decreasing and finally reaches a
saturation value smaller than the maximum accepted
traffic However, this problem won’t happen in the
network adopting the cycle stealing buffer architecture.

7 PERFORMANCE EVALUATION OF PHYSICAL
CHANNEL MANAGEMENT SCHEME

In this section, we would like to show the
performance differences between two different networks
adopting different methods to realize multiple virtual
channels across one physical channel.

7.1 Performance evaluation between different
ring networks adopting different methods to
realize multiple virtual channels across one
physical channel

First, we would like to show the performance evaluations
of ring networks adopting different methods to realize
multiple virtual channels across one physical channel.
One method is to equally assign the physical channel
resource to each virtual channel in round robin. The other
is the physical channel management scheme described
previously. In these two cases, only one physical channel
is used to connect neighbor nodes. For comparison
purpose, we also simulate a ring network using two
physical channels to break deadlock due to cyclic
dependence. In this case, escape channel is not
virtualized. This provides the best scenario at the expense
of an extra physical channel.

For a fair simulation, some network issues are fixed
and described earlier in Table. 6.1.

The simulation results about average flit latency in
different applied loads are shown in Fig. 7.1.

Fig. 7.1 Average flit latency of ring networks adopting
different methods to realize multiple virtual channels

across one physical channel

In this figure, we can see that by adopting the physical

channel resource management scheme, the average flit
latency performance (the middle curve in Fig.7.1) is very
close to the network without virtualing the escape
channel which uses two physical channels instead of one
physical channel (the curve on the right). In addition, the
performance is also much better than the case just equally
assigning the physical channel resources to each virtual
channel across it (the curve on the left in Fig.7.1).

The accepted traffic per node in different applied load
can also be plotted in Fig. 7.2.

Fig. 7.2 Accepted traffic/node of ring networks

adopting different methods to realize multiple virtual
channels across one physical channel

In this figure, the maximum value of the accepted

traffic in the ring network adopting the physical channel
management scheme is smaller than the network without
virtualing the escape channel which uses two physical
channels instead of one. However, the performance is
much better than just equally assign the physical channel
resource to each virtual channel across it (only one
physical channel is used to connect neighbor nodes).

Since the network adopting the physical channel
management scheme uses only one physical channel,
and the network without virtulizing the escape channel
uses two physical channels, it is reasonable to expect that
the accepted traffics per node using physical channel
management scheme is smaller. However, the network
peaks at a smaller applied load. When we increase the
applied load further, the accepted traffic starts decreasing
and finally reaches a steady state value smaller than the
maximum accepted traffic.

Therefore, we can conclude that under the same
amount of physical channel resources, using the physical
channel management scheme can certainly improve the
overall network performance.

10

8 CONCLUSIONS

In this paper, the cycle stealing buffer architecture is
proposed, which eliminates the waste cycles in a
read/write event. From simulation results, we clearly
prove that this buffer architecture can improve the
network performance with only a small extra cost on
hardware.

In addition, the physical channel management scheme
is proposed, which manages how one physical channel
resource can be shared by multiple virtual channels
effectively. This scheme can improve the physical
channel data transfer efficiency and reduce the
congestion problem due to a hot spot.

From simulation results, we also prove that the
network adopting physical channel management scheme
performs much better than the network adopting
conventional virtual channel multiplexing. And the
performance is just slightly smaller than the network
without virtualing the escape channel which uses two
physical channels instead of one physical channel.
Therefore, we can conclude that the physical channel
management scheme is an efficient solution for multiple
virtual channels to share one physical channel resource.

Acknowledgements

This work is supported by National Science Council,

Taiwan under grant 96-2220-E-007-032 and ITRI under
grant of 62-96032

REFERENCES

[1] J. Duato, S. Yalamanchili, and L. Ni, Interconnection

Networks – An Engineering Approach. Morgan
Kaufmann, 2002.

[2] L .Benini and G. De micheli, “Networks on Chips: A
New SoC Paradigm,” Computer, vol.35, no.1,pp.
70-78,Jan.2002.

[3] P. Magatshack and P. G. Paulin, “System-on-Chip
beyond the Nanometer Wall,” Proc. Design
Automation Conf. (DAC), pp.419-424, June 2003.

[4] M. Oka and M. Suzuoki, “Designing and
Programming the Emotion Engine,”IEEE Mirco,

Vol. 19, No.6, November-December 1999, pp.
20-28.

[5] D. Pham, et al., “Overview of the Architecture,
Circuit Design, and Physical State Circuits of a first
generation Cell processor”, IEEE Journal of Solid
State Circuits Vol. 41, No.1, January 2006,pp
179-196.

[6] M.A. Horowitz et al., “The Future of Wires,” Proc.
IEEE,vol.89, no.4, pp. 490-504, Apr. 2001.

[7] D. Sylvester and K. Keutzer, “Impact of Small
Process Geometries on Microarchitectures in
Systems on a Chip,” Proc. IEEE, vol.89, no. 4,
pp.467-489, Apr.2001.

[8] Kyeong Keol Ryu, Eung Shin, and Vincent J.
Mooney, ”A Comparison of Five Different Multi
processor SoC Bus Architectures,” Digital Systems,
Design, 2001. Proceedings. Euromicro Symposium
on 4-6 Sept. 2001 pp.202-209

[9] J. Plosila, T. Seceleanu, and P. Liljeberg,
“Implementation of a self-timed segmented bus,”
Design & Test of Computers, IEEE Vol. 20, Issue 6,
Nov.-Dec. 2003 pp.44 – 50

[10] J. Plosila, P. Liljeberg, J. Isoaho, ”Pipelined on-chip
bus architecture with distributed self-timed
control,” Signals, Circuits and Systems, 2003. SCS
2003. International Symposium on Vol. 1, 10-11
July 2003 pp.257 – 260

[11] L. Benini and G. De Micheli, Networks on chip –
Technology and Tools. Morgan Kaufmann, 2006.

[12] L. De Coster,N. Dewulf, and C. T. Ho,"Efficient
Multi-Packet Multicast Algorithms on Meshs with
Wormhole and Dimension-Ordered Routing," Proc.
1995 Int'l Conf. Parallel processing, Vol.3 IEEE CS
Press, Los Alamitics, Calif.

[13] Michael D.Ciletti, Modeling, synthesis and rapid
prototyping with the Verilog HDL. Prentice Hall,
1999.

[14] W. J. Dally, “Virtual-channel Flow Control,” IEEE
Trans. On Parallel and Distributed systems, March,
1992.

[15] W. J. Dally and C. L. Seitz, “Deadlock-Free
Message Routing in Multiprocessor
Interconnection Networks,” IEEE Transaction on
Computers, Vol. 36, No. 5, May 1987, pp.547-553.

 [16] SystemC User’s Guide Version 2.0

