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Abstract 
 

With the improvement of chip manufacture process, a 
single chip may contain many processor cores and 
functional units. These cores and functional units 
communicate with each other through an on-chip 
interconnection network. Therefore, a key issue in the 
design of multi-core chip is how to construct a low 
latency high bandwidth on-chip interconnect.  

In this paper, a cycle stealing buffer and a physical 
channel management scheme are proposed for the design 
of on chip networks. The cycle stealing buffer can reduce 
the number of cycles in reading and writing a network 
buffer. The physical channel management scheme can 
efficiently multiplex and arbitrate the physical channel 
among many virtual channels. These two methods can be 
adopted in wormhole based networks to improve both 
latency and throughput. In this paper, by use of 
simulation, we study the feasibility and benefits of these 
two methods using a wormhole based ring network.  
 

Index Terms— on chip network, cycle stealing buffers, 
physical channel management scheme 
 

1. Introduction 
 

ith the advance on electronic systems, the demand 
for more computing power has never stopped. 

Although the performance of processors has doubled in 
approximately every three-year span from 1980 to 1996, 
the complexity of applications has continuously driven 
the development of even faster processors. However, 
boosting the performance of processors becomes very 
complex and expensive, only a few companies all over 
the word can afford it. Therefore multi cores had been 
proposed as an alternative approach.  

In this approach, several processor cores and 
functional units can cooperate to solve a large problem. 
Therefore, designing high performance interconnections 

becomes a critical issue to exploit the performance of 
multi-core system [1].  

Thanks to the evolution of integrated circuit 
technology, a single chip may contain a large set of 
processing units and numerous IPs. This makes multi 
processor system on chip (MP-SoC) possible and 
provides integrated solutions to challenging design 
problems in lots of domains, such as telecommunication, 
multimedia and consumer electronics [2].  

A critical issue for MP-SoC design is the 
interconnection between processing units and 
heterogeneous functional units [3]. Efficient 
interconnection is necessary for these elements to 
cooperate with each other. MP-SoC was developed for 
high-performance computation, such as image 
processing. For example, “Emotion Engine” proposed by 
Sony [4], and “Cell Processor” proposed by IBM [5], 
where on chip interconnection efficiency is the key to the 
overall system performance.     

For an interconnection design in MP-SoC, 
synchronization with a single clock can be extremely 
difficult. Though gate delays scale down with technology, 
global wire delays typically increase exponentially or, at 
best, linearly by inserting repeaters. Even after repeater 
insertion, the delay may exceed the limit of one global 
clock cycle [6]. Even more, in ultra-deep submicron 
processes, more than 80 percent delay will come from the 
interconnection wires [7]. 

In the last decades, one of the most frequently used 
on-chip interconnection is the shared medium bus; this 
interconnection architecture serializes requests from any 
master units connecting to the bus, forces each 
transaction to complete before next transaction can begin. 
As a result, the interconnection efficiency decreases 
severely when the number of masters  increases, this 
limits the number of processing units and functional IP 
blocks that can be connected to a bus and thereby limits 
the system scalability. Several solutions for such case 
were proposed, based on splitting the bus into many 
separate local segments. By introducing a hierarchical 
architecture and the concept of global asynchronous and 
local synchronous (GALS), modules in a particular 
segment can exchange data independent of modules in 
other segments at a locally defined speed, and access the 
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global bus through self-timed interface [9] [10]. However 
this bus-based system has the inherent limitations, as all 
attached devices must share the bandwidth of the bus. 
Also, the performance degrades due to the bus parasitic 
capacitance and the complexity of arbitration.  

To overcome these problems, a network-based 
interconnection approach was proposed. In this approach, 
the communication among units can take place in the 
form of some pre-defined logical units, such as message 
or packet. With the assist of network components, such as 
router, switch … etc, units connected to the network can 
exchange their information. This approach resembles the 
network of multi-processor system, and is well known as  
“On-Chip Networks”. 

Unlike other networks, such as internet or 
multi-computer cluster system network, on-chip network 
has much more design constraints due to the physical 
characteristic of a chip. It is not feasible to think that 
on-chip network equates to porting the Transmission 
Control Protocol/ Internet Protocol (TCP/IP) to silicon or 
achieving an on-chip Internet, due to the high latency and 
complexity of TCP/IP. [11] 

For on-chip network design, the network must be 
simple enough. Complex network may lead to complex 
design issues, therefore increase the hardware 
complexity of each network component. With the 
increase on hardware complexity, network area and 
power consumption also increase, thereby reducing the 
overall network performance. Moreover, an on chip 
network must conform to on chip wiring constraints. 
Long wring paths may lead to huge parasitic resistance 
and cause a large wire delay. Crossover wirings in 
different metal layers may lead to parasitic capacitance 
and cause signal crosstalks A design tradeoff between 
hardware cost and network performance must be handled 
carefully. Therefore, in this paper, the cycle stealing 
buffers and the physical channel management scheme are 
proposed for wormhole on-chip networks. These 
methods can be easily adopted in wormhole on-chip 
networks which improves the overall network 
performance under the chip design constraints. 

We describe our cycle stealing buffer design and 
physical channel management scheme in section 2 and 3 
respectively.  In section 4, we adopt these two methods in 
the design of a ring based network.  We then describe the 
simulation environment in section 5. Section 6 and 7 
show the simulation results using these methods. Finally 
we conclude our study in section 8.  

 
 

2. Cycle stealing buffers 
 

As we mentioned earlier, on-chip network has much 
more constraints than conventional network designs. 
Most of them come from the physical characteristic of a 
chip. Under these constraints, designers must optimize 
the network carefully. Otherwise the optimization may 
incur a huge cost on hardware and become infeasible. 

Since network buffers are necessary components for 
every network node, their designs will severely influence 
the overall network performance. We can estimate that a 
small performance improvement in network buffer will 
induce a large performance improvement in overall 
network. 

In today’s network designs, most of them adopt the 
first in first out (FIFO) architecture as their storage buffer. 
In this section, we will briefly discuss the conventional 
FIFO architecture and its behavior. Then, the cycle 
stealing buffers are proposed, which improves the 
network performance with only a small extra cost. 
 

2.1 Conventional One Port FIFO 
 

A conventional one port FIFO shown in Fig. 2.1 is 
composed of two data pointers (read and write), some 
necessary control elements and lots of storing units. This 
module includes one bidirectional bus for data transfer, 
two status output signals (full and empty) which show the 
FIFO state and four control signal inputs (clock for 
synchronization, reset for buffer refreshment, and 
read/write for data access control). 
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Fig. 2.1 Block diagram of a conventional one port 

FIFO 
 

This architecture can implement a first-in-first-out 
storage function using the smallest number of IO pins and 
control signals [13]. If the hardware area constraint is 
severe and the performance requirement is not critical, 
this FIFO architecture may be a good solution for NoC 
buffers and can be easily adopted. 

 

2.2 Conventional Two Port FIFO 
 

As described in the previous section, a conventional 
one port FIFO can be easily adopted as storage units in 
on-chip networks. However, this architecture has a 
limitation that only one data command, read or write can 
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be processed in every cycle. As a network buffer, this 
disadvantage will become a problem because it can’t 
store and forward data information at the same time. 
Packets flowing in the network may be blocked 
frequently, waiting for the FIFO to finish its previous 
data transfer command. Lots of cycles are wasted due to 
this IO resource limitation, thus it becomes important to 
solve this problem. Therefore we add another data port, 
that is, two data ports in this module, one for data input, 
another for data output as shown in Fig. 2.2. 
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Fig. 2.2 Block diagram of a conventional two port 

FIFO 
 

While the FIFO is not full or empty, user can write data 
into the FIFO buffer and read data from the FIFO 
simultaneously. No extra delays on contention for the 
data bus resource and the chance for packets to be 
blocked decreases. Without other conditions, packets can 
flow trough the network in a pipeline fashion. 

 

2.3 Conventional FIFO Behavior 
 

In this section, we would like to discuss the 
conventional FIFO behavior when switching from a full 
state to a non-full state and its shortcoming. 

Fig. 2.3 shows a FIFO read/write example. In this 
example, we are going to discuss the behavior of a 
conventional FIFO design when switching from a full  to 
a non-full state.  

In cycle 1, a write event is declared by asserting the 
write signal and the data input. However, the FIFO is full 
and the data is not written into the FIFO in this cycle. In 
cycle 2, a read event is declared by asserting the read 
signal. Because the write process is not finished in cycle 
1, the write signal remains high. In this cycle, data_0 is 
successfully read, therefore the data output is data_0. 
After this read process, the FIFO has one empty space, 
and the full signal is also reset. Since the FIFO is not full, 
the write event declared in cycle 1 can write data into the 
FIFO in cycle 3. 
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Fig. 2.3 An example of conventional FIFO behavior 

 

2.4 Cycle Stealing Buffer Behavior 
 

From the above example, we can recognize that the 
FIFO has to change its state from a full state to a non-full 
state in cycle 2, and then the data can be written in cycle 3. 
With this FIFO behavior, it induces an extra cycle delay 
every time when the buffers are full. 
In order to fix this problem, we proposed a new design 
concept, which eliminates the extra cycle delay as Fig. 
2.4 shows. 
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Fig. 2.4 The behavior of a cycle stealing buffer 

 
The same as in previous example, a write event is 

declared in cycle 1, and the data is not written into the 
FIFO since the FIFO is full. In cycle 2, there is a new read 
event declared, so there are two events: a write and a read 
ready to be processed. Instead of waiting for the state 
transition from a full state to a non-full state, we can let 
both events be processed at the same cycle. That is, to 
read out the old data (data_0), and then write in the new 
data (data_4), just like what a single Flip Flop works. By 
using this concept, we can reduce the extra cycle wasted 
on an un-necessary state switching. 

Although we have increased the buffer design 
complexity slightly, the buffer is still less complex than 
other network components and will not impact the 
network operation frequency. 
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3 Physical channel management scheme 
 

The most expensive resources in network design are 
physical channel bandwidth associated with 
communication links and buffer space associated with 
each channels. Therefore, most current network designs 
use wormhole switching technique to efficiently use 
these expensive resources. 

In wormhole switching networks, once a packet 
occupies the buffer of a physical channel, no other 
packets can access the physical channel. If this packet is 
blocked, the physical channel resource will be wasted. In 
order to increase the physical channel efficiency in 
wormhole network, a physical channel may be divided 
into several logical or virtual channels [14]. Logically, 
these virtual channels operate as distinct physical 
channels with a lower speed. Physically, packets at 
different virtual channels share the resource of that 
physical channel. With this method, a blocked packet 
stored in a certain virtual channel’s buffer won’t occupy 
the whole resource of the physical channel. 

Virtual channels can also be used for deadlock 
prevention algorithm. By virtualizing the escape 
channels [15], which break the cyclic channel 
dependencies, the number of physical channels can be 
reduced and no extra cost incurs on inter-node wiring 
when deadlock prevention algorithm is adopted.  

In the following section, the conventional virtual 
channel implementation scheme is briefly described first. 
Then we will propose a physical channel management 
scheme to efficiently manage the physical channel 
resource among multiple virtual channels in wormhole 
on-chip networks using virtual channels. 

 

3.1 Conventional virtual channel multiplexing 
 

A conventional virtual channel multiplexing is the 
flow control that can be easily adopted in wormhole 
based on-chip networks using virtual channels. It equally 
assigns the physical channel resource to those virtual 
channels across it. Each virtual channel uses the physical 
link for one clock cycle only and has to wait until all 
other virtual channels have used the link. These virtual 
channels share the physical channel in a round robin 
fashion. This method can be described by a selection 
function: 

[Owner ID = (cycle count) mod (n)] 
 In this selection function, n represents the total 

number of the virtual channels and each of these virtual 
channels can operate as 1/n speed of the physical channel. 
Since the transfer speed of each virtual channel is fixed, 

no extra control is needed in this implementation method. 
To implement the conventional virtual channel 

multiplexing, a multiplexer and a de-multiplexer are 
added on different end of a physical channel and a 
selector is added to implement the selection function, as 
Fig. 2.1 shows. 
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Fig. 3.1 Virtual channel implementation block 

diagrams 
 

In conventional virtual channel multiplexing, 
although the flexibility and efficiency of physical 
channels has increased; a blocked packet stored in a 
certain virtual channel’s buffer won’t occupy the whole 
resource of the physical channel. However, the speed of 
each virtual channel also decreases significantly 
according to the number of virtual channels [1]. This 
decrease in speed will become a bottleneck for using 
virtual channel. 

To solve this problem, we need to analyze the transfer 
state of virtual channels in different kind of situations. 

 

3.2 The transfer state of virtual channels 
 
 First, we assume an ideal case that all of the virtual 

channels across one physical channel are ready to send 
packet, and these packets will not be blocked in the future. 
In this ideal case, the utilization rate of the physical 
channel is 100%, thus the speed of these virtual channels 
across it can not be further increased.  

However, the ideal case mentioned above is just a 
sparse event.  Most of the time, not every virtual channel 
across the physical channel is ready to transfer data 
through it. Some of the virtual channels may not buffer 
any packet; or it may buffer a packet which will be 
blocked in the future. Under these circumstances, if we 
just equally assign the physical channel resource to every 
virtual channel, the resource may be assigned to a virtual 
channel which is not ready to transfer data through it, 
causing a waste on physical channel resource. Therefore, 
how to assign the physical channel resource among these 
virtual channels becomes an important issue.  

Instead of equally sharing the physical channel 
resource, we can make a resource arrangement according 
to the statistic traffic information. We can assign more 
usage time to these virtual channels with higher traffic 
loads. However, this pre-determined resource 
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arrangement method may just meet the requirement of a 
certain traffic pattern. When the applied traffic changes, 
it may perform worse than the conventional virtual 
channel multiplexing. 

 

3.3 Physical channel management scheme 
 

Since the pre-determined resource arrangement 
method is not a good solution, we try to adaptively 
arrange the physical channel resource according to the 
run time traffic information about each virtual channel 
and to make the utilization rate as high as possible. 
However, collecting the global run time traffic 
information is not an easy problem. The time needed to 
process and apply this information on resource 
assignment may also cause the traffic information to be 
out of date, making the resource assignment not suitable 
for the current traffic load. In addition, the hardware 
needed to implement this method will also become a 
bottleneck. 

For these reasons, we propose an idea to collect the 
run time local traffic information, and immediately apply 
it to the resource assignment method. Since the 
processing time is short, this resource arrangement 
should be much more efficient.  

The run time local traffic information can be collected 
by viewing the state of each virtual channel and its 
destination buffer. If there isn’t any packet in a virtual 
channel’s buffer, we can conclude that this virtual 
channel will not send a packet through the physical 
channel in the next clock cycle; therefore there is no need 
to assign the physical channel resource to it. Besides, if a 
packet exists, but the destination buffer is full and 
blocked, this virtual channel cannot send a packet 
through the physical channel in the next clock cycle and 
therefore there is no need to assign physical channel to it 
either. By not assigning physical channel resource to 
those virtual channels that have no data to transfer and 
those their destination buffers are full and blocked, we 
can prevent unnecessary wastes on physical channel 
resource. 

In addition, by viewing the buffer state of each virtual 
channel, the physical channel management scheme can 
also assign more physical channel resource to those 
virtual channels with higher traffic loads. This also 
reduces the congestion problem due to hot spot  and 
improves the overall data transfer efficiency. 

 

4 Applying these methods to wormhole 
based ring network 

 
In this section, the cycle stealing buffers and the 

adaptive physical channel management scheme are 
adopted in a wormhole based ring network design as 
shown in Fig. 4.1. We use ring network for our initial 
study because it has been used in IBM’s Cell 
processor[5]. 
 

Network
Node0

Functional
Unit0

Network
Node1

Functional
Unit1

Network
Node2

Functional
Unit2

Network
Node3

Functional
Unit3

Network
Node4

Functional
Unit4

Network
Node5

Functional
Unit5

Network
Node6

Functional
Unit6

Network
Node7

Functional
Unit7

Network
Node8

Functional
Unit8

Network Design  
Fig. 4.1 A rough diagram of ring topology network 

 

4.1 Network node design in wormhole based 
ring topology networks adopting cycle 
stealing buffers 

 
In order to break the deadlock anomaly resulting from 

the possible cyclic channel dependencies in a ring 
topology network, an extra escape channel is added to 
connect the neighbor nodes [15]. In addition, there are 
two physical channels connecting to each node, one for 
data injection from functional units, another for data 
consumption by functional units.  

In this network design, we assume a buffer is 
associated with each channel for storing messages in 
transmit and an extra buffer for data injection.  

In each network node, we use a router to determine 
the path for the packets stored in different buffers and an 
arbiter to decide which packets will be granted to use the 
physical channel. These modules can co-operate to 
maintain the path for each incoming packet and support 
simultaneous access of different channels. The block 
diagram of the network node is shown in Fig. 4.2. 
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Fig. 4.2 A network node block diagram for ring 
topology network adopting cycle stealing buffers 
 
The IO ports of this block diagram are described in Table 
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4.1. 
 

Table. 4.1 IO port description of Fig. 4.1 
IO Ports description 
PIreq shows a write request from functional unit 
PIreq_1 shows a write event from channel 1 
PIreq_2 shows a write event from escape channel 
PIdata data input from functional unit 
PIdata_1 data input from input channel 1 
PIdata_2 data input from input escape channel 

PIfull_1  
shows a full state from right hand side node 
FIFO channel, which is the destination 
FIFO for output channel 1 

PIfull_2 
shows a full state from right hand side node 
FIFO escape channel, which is the 
destination FIFO for output escape channel

PIfull_3 
shows a full state from functional unit 
buffer, which is the destination FIFO for 
output physical channel to functional unit 

PItrans_1  
shows a transfer state from next state’s 
FIFO channel, which is the destination 
FIFO for output  channel 1 

PItrans_2 

shows a transfer state from next state’s 
FIFO escape channel, which is the 
destination FIFO for output physical 
channel 2 

PItrans_3 
shows a transfer state from functional unit 
buffer, which is the destination FIFO for 
output physical channel 3 

POfull  declare a full state of FIFO injection queue
POfull_1 declare a full state of FIFO channel  
POfull_2 declare a full state of FIFO escape channel 
POtrans  declare a read state of FIFO injection queue
POtrans_
1 declare a read state of FIFO channel 

POtrans_
2 declare a read state of FIFO escape channel

POreq_1 declare a write request to channel 
POreq_2 declare a write request to escape channel 
POreq_3 declare a write request to functional unit 
POdata_1 data output to channel 1 
POdata_2 data output to escape channel 
POdata_3 data output to functional unit 

 
By using the state signals (PItrans, PIfull …etc) from 

the neighbor node on the right hand side, the current node 
can determine the state of the destination buffer. If this 
buffer is transferring data, no matter it is full or not, a 
granted buffer at current node can start transmitting data 
through the physical channel to the destination buffer on 
the next node. 

Since the buffer state at current node may also 
influence the data transfer of the left hand side neighbor 

node, which wants to send data to current node. 
Therefore, output state signals (POtrans, POfull …etc ) 
describing the state of each buffer, must be sent to the left 
hand side node too. Using this network node architecture, 
we can realize the cycle stealing buffer concept proposed 
earlier. 

 

4.2 Network nodes adopting cycle stealing 
buffers and physical channel management 
scheme 

 
To realize the physical channel management scheme 

in a ring topology network, we virtualize the escape 
channels which break the cyclic dependency and add two 
modules in each network node as Fig. 4.3 shows. 
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Fig. 4.3 A network node design for ring topology 

network adopting cycle stealing buffers and physical 
channel management scheme 

 
The physical channel management controller can 

select one of the virtual channels which can transfer data 
through the physical channel, and skip those unable to 
transfer. Thus, the physical channel resource won’t be 
wasted, and the utilization rate of physical channel can be 
higher than just equally assigning the physical channel 
resource to every virtual channel across it. In addition, 
the controller can also assign more physical channel 
resource to virtual channels having more ready-to-send 
packets on their buffers.  

The de-selector is a de-multiplexer device, which can 
pass the incoming data to their destination buffer using 
the information from sender’s physical channel 
management controller module. 

In this network node architecture, we have 
encountered some problems. Most of them come from the 
irregular transfer state of network buffers resulting from 
adaptive physical channel resource management. A 
buffer sharing more physical channel resource with 
others will have longer transfer time across the physical 
channel. To prevent data miss or duplication due to the 
irregular transfer state of network buffers, we have added 
some control signals and functions in each network 
component, balance the data transfer among all network 
buffers to prevent data miss or duplication. We also 
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consider this irregular transfer state of network buffers in 
our adaptive resource management scheme and maintain 
the physical channel efficiency as high as possible.  
 

5 Simulation environment & performance 
matrix 

 

5.1 Simulation environment 
 

To verify our network design and measure the 
network performance, we need a simulation environment 
that can provide cycle accurate RTL level behavior 
model, which describes the detail behavior of each 
network component. In addition, we also need a 
simulation environment that can support statistic 
measurement analysis. Therefore a hardware description 
langue, like Verilog, can not satisfy our need. Although it 
can describe the detailed behavior of a hardware 
component in a cycle accurate way, it can not easily 
support complex statistic measurement analysis.  

Besides Verilog, a high level programming language, 
such as C++, can’t describe the detailed behavior of a 
hardware component, thus, these languages won’t satisfy 
our need either. For these reasons, we try to build up the 
simulation environment using SystemC.  

SystemC is a C++ class library and a methodology 
that can be used to effectively create a cycle-accurate 
model for software algorithms, hardware architecture,  
interfaces of SoC and system-level designs. The SystemC 
class library provides necessary constructs to model 
system architecture including hardware timing, 
concurrency, and reactive behavior that are missing in 
standard C++ [16]. SystemC also supports C++ library 
which provides us a convenient environment for statistic 
measurement analysis on network performance. Due to 
these characteristics, we adopt SystemC to set up our 
simulation environment to implement, verify, and 
measure our network design. 

Methods about how higher level layer protocols are 
implemented are less critical on the network performance 
than other network design issues. So, in our simulation 
environment, we will assume that data have already 
finished their high level layer protocols, like data 
encryption or data packetization. With this point of view, 
an abstract class called ‘Flit’ was built, which contains 
the necessary information for network simulation such as 
message number, packet number, flit injection 
time, …etc. With this abstraction, we can build up a 
packet class, and a message class in different size. 

For high level system abstraction, we let the Flit size 

equal to the Phit size. By definition: a flit is the logical 
unit of information that can be transferred across a 
physical channel in a single cycle. We can also abstract 
the physical channel width to one flit size. 

After creating these system level abstractions, we are 
going to design a traffic generator module that can 
generate network traffic in these abstract formats. For a 
general case study on network performance, we model a 
traffic generator which generates messages using a 
Poisson process with an adjustable injection rate at each 
node This helps us to achieve a fast and general 
simulation [2]. 

 

5.2 Performance metrics 
 

For network performance evaluation, designers have to 
define the network performance matrix. In this section, 
we will briefly describe the performance matrix for our 
network performance evaluation. 

 
1. Accepted traffic (Flits): total flit numbers that can 

travel from source to destination during the 
simulation period. 

2. Accepted traffic per node (Flits): accepted traffic 
divided by total network node numbers in network. 

3. Throughput (Flits): the maximum amount of 
accepted traffic. 

4. Flit latency (cycles): cycles needed from flit 
injection to flit consumption.   

5. Average flit latency for node n (cycles): 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
∑
=

nnodebyacceptedflitsofnumbertotal

nconsumptiotoinjectionflitfromneededCycle
numberflit

k
k

_______

______
_

0
 

 
6. Overall average flit latency (cycles): 
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7. Applied load for generator n (Flits/cycles): 
 

⎥
⎦

⎤
⎢
⎣

⎡
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ngeneratorbygeneratedflitsofnumbertotal
__

_______  

 
Using these definitions, the applied load value shows 
the injection rate of the generator. For example, 
applied load of 1.0 means that the generator will 
generate a flit in each cycle; applied load of 0.5 
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means that the generator will generate a flit in every 
two cycles. 

 

6 PERFORMANCE EVALUATION OF CYCLE 
STEALING BUFFERS 

 

6.1 Performance comparisons between two ring 
networks adopting different buffer 
architectures 

 
In this section, we would like to show the 

performance comparisons between two ring topology 
networks adopting different buffer architectures. One of 
the architecture is the conventional two ports FIFO, the 
other is the cycle stealing buffer architecture. 

In these performance evaluations, we let other 
network issues, such as topology, routing, switching 
method…etc be fixed, and try to make fair comparisons 
between two different buffer architectures. Those fixed 
network issues are described in Table. 6.1. 
 
 
Table. 6.1 Fixed network parameters for 
performance evaluations between two ring  networks 
adopting different buffer architectures. 

 Message 
Size 

Packet 
Size Flit size Number 

of nodes
Fixed 
value 1 packet 4 Flits 1 Phit 9 

 

 Topology Switching Routing FIFO 
size 

Fixed 
value Ring Wormhole Deadlock 

prevention 
4 

Flits
 

 Arbitration 
method 

Simulation 
Cycle  

Fixed 
value 

Weighted 
round robin 100000  

    
The simulation results about average flit latency for 

the networks adopting different buffer architectures in 
different applied load per node are shown in Fig 6.1. 
 

 

Fig. 6.1 Average flit latency comparison between two 
ring networks adopting different buffer architectures 

  
In this figure, we can see that the average flit latency 

of the network adopting cycle stealing buffer architecture 
is smaller than the network adopting conventional FIFO 
architecture, especially when the applied load grows 
larger. With a very small applied load, the two designs 
have about the same average flit latency. This is expected 
since each buffer in the networks will never be full. 

As a result of average latency reduction, we can 
expect that the maximum accepted traffic will also 
improve. These simulation results about accepted traffic 
for the ring network adopting different buffer 
architectures are plotted in Fig. 6.2. 

 
Fig. 6.2 Accepted traffic/node comparison between 

the ring networks adopting different buffer 
architectures 

 
From this figure, we can see that there is a large gap in 

the maximum accepted traffic per node between these 
two different buffer architectures as the applied load 
increases. The network adopting conventional FIFO 
architecture peaks at a smaller applied load than the 
network adopting cycle stealing buffer architecture. In 
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addition, when the applied load is further increased, the 
accepted traffic starts decreasing and finally reaches a 
saturation value smaller than the maximum accepted 
traffic  However, this problem won’t happen in the 
network adopting the cycle stealing buffer architecture. 

7 PERFORMANCE EVALUATION OF PHYSICAL 
CHANNEL MANAGEMENT SCHEME 

In this section, we would like to show the 
performance differences between two different networks 
adopting different methods to realize multiple virtual 
channels across one physical channel. 

7.1 Performance evaluation between different 
ring networks adopting different methods to 
realize multiple virtual channels across one 
physical channel 

 
First, we would like to show the performance evaluations 
of ring networks adopting different methods to realize 
multiple virtual channels across one physical channel. 
One method is to equally assign the physical channel 
resource to each virtual channel in round robin. The other 
is the physical channel management scheme described 
previously. In these two cases, only one physical channel 
is used to connect neighbor nodes. For comparison 
purpose, we also simulate a ring network using two 
physical channels to break deadlock due to cyclic 
dependence. In this case, escape channel is not 
virtualized. This provides the best scenario at the expense 
of an extra physical channel. 

For a fair simulation, some network issues are fixed 
and described earlier in Table. 6.1. 

The simulation results about average flit latency in 
different applied loads are shown in Fig. 7.1. 

 

Fig. 7.1 Average flit latency of ring networks adopting 
different methods to realize multiple virtual channels 

across one physical channel  

 
In this figure, we can see that by adopting the physical 

channel resource management scheme, the average flit 
latency performance (the middle curve in Fig.7.1) is very 
close to the network without virtualing the escape 
channel which uses two physical channels instead of one 
physical channel (the curve on the right). In addition, the 
performance is also much better than the case just equally 
assigning the physical channel resources to each virtual 
channel across it (the curve on the left in Fig.7.1). 

The accepted traffic per node in different applied load 
can also be plotted in Fig. 7.2. 

 
Fig. 7.2 Accepted traffic/node of ring networks 

adopting different methods to realize multiple virtual 
channels across one physical channel 

 
In this figure, the maximum value of the accepted 

traffic in the ring network adopting the physical channel 
management scheme is smaller than the network without 
virtualing the escape channel which uses two physical 
channels instead of one. However, the performance is 
much better than just equally assign the physical channel 
resource to each virtual channel across it (only one 
physical channel is used to connect neighbor nodes).  

Since the network adopting the physical channel 
management scheme  uses only one physical channel, 
and the network without virtulizing the escape channel 
uses two physical channels, it is reasonable to expect that 
the accepted traffics per node using physical channel 
management scheme is smaller. However, the network 
peaks at a smaller applied load. When we increase the 
applied load further, the accepted traffic starts decreasing 
and finally reaches a steady state value smaller than the 
maximum accepted traffic. 

Therefore, we can conclude that under the same 
amount of physical channel resources, using the physical 
channel management scheme can certainly improve the 
overall network performance. 
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8 CONCLUSIONS 
 

In this paper, the cycle stealing buffer architecture is 
proposed, which eliminates the waste cycles in a 
read/write event. From simulation results, we clearly 
prove that this buffer architecture can improve the 
network performance with only a small extra cost on 
hardware.  

In addition, the physical channel management scheme 
is proposed, which manages how one physical channel 
resource can be shared by multiple virtual channels 
effectively. This scheme can improve the physical 
channel data transfer efficiency and reduce the 
congestion problem due to a hot spot. 

From simulation results, we also prove that the 
network adopting physical channel management scheme 
performs much better than the network adopting 
conventional virtual channel multiplexing. And the 
performance is just slightly smaller than the network 
without virtualing the escape channel which uses two 
physical channels instead of one physical channel. 
Therefore, we can conclude that the physical channel 
management scheme is an efficient solution for multiple 
virtual channels to share one physical channel resource. 
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