
改良型矩陣乘法器之設計

Design of an Improved Matrix Multiplier

鄭夢涵

國立暨南國際大學資工系

s3321525@ncnu.edu.tw

杜迪榕

國立暨南國際大學資工系

drduh@ncnu.edu.tw

楊蘭超

國立暨南國際大學資工系

s96321528@ncnu.edu.tw

摘要

矩陣乘法是科學與工程計算中常見的運算之

一，許多人皆為了能增進其計算效率而努力。近幾

十年以來，為了加速這類需要龐大計算量的運算，

平行處理不外乎為最佳的選擇。隨著硬體製造技術

的進步，選擇高速的處理器或是採用多個處理器來

執行這類型的運算也非常普遍。在此篇論文中，合

併運算將被包含在平行架構中進行。合併運算打破

個別的乘法器與加法器的界線，而將乘法與加法視

為一體同時執行。然而，在做個別乘積項的加法

時，並沒有任一個方法總是最好的。因此，我們提

出一個包含之前的方法和新的混合方式來尋找最

有效率的一種。有鑒於使用者對系統的考量並不唯

一，我們的模擬程式將輸出三種量測標準供使用者

選擇，分別是時間，成本和時間乘以成本。除此之

外，大致的硬體連接方式也被呈現於結果中，協助

之後的實作設計。對於追求高效能以及低成本的系

統設計中，此研究的成果應能提供莫大的幫助。

關鍵詞：矩陣乘法，合併運算，定點運算，縮小部

分乘積矩陣

Abstract

Since matrix multiplication is one of the most

used operations in science and engineering, a lot of

efforts for improving its efficiency have been made

greatly. To accelerate such enormous computing,

parallel processing architectures are mostly

considered by decades. For the advance of

manufacturing technology, high clock rate processors

or multiple processors are also used to speed up the

computation. In this work, another approach called

merged arithmetic is included into our parallel

architecture. It dissolves the boundary between the

individual multipliers and adders to perform multiple

multiply and addition in parallel. However, none of

the methods, which were presented previous for

reducing partial product matrix, is absolutely better

than others. This study proposes a combined method

to find out the most efficient reduction. Respecting

the user’s demand is not the same all the time; our

simulation results include three metrics, delay, cost,

and delay × cost. Moreover, the hardware

interconnection for further implementation is also

offered. It is very helpful for the design of such

systems because a high performance throughput and

low cost system are both what we concern.

Keywords：Matrix multiplication, merged arithmetic,

fixed-point arithmetic, partial product matrix

reduction

1 Introduction

Matrix multiplication is widely used for solving

numerical problems in many areas, such as signal

processing, image processing, robotics, and computer

graphics, etc [16]. It requires enormous computing

power and long execution time during computation

so that many researchers have tried to improve the

performance of matrix multiplication [2]. It is very

inefficient if the computation is done by software on

the core central processing unit and the hardware

implementation of such a processor is desirable [15].

For the advance of manufacturing technology, high

clock rate processors or multiple processors are also

used to speed up the computation. Hence, the

hardware implementation of the matrix multiplier is

an important issue on parallel processing.

It is known that the inner product is the basis of

the matrix multiplication. Swartzlander introduced

another concept called merged arithmetic for inner

product function [9], [20]. It is introduced to reduce

the implementation cost and improve the processing

speed. In [17], when very high performance is needed,

it is sometimes desirable, or even necessary, to build

hardware structures to compute the function of

interest directly without breaking it down into

conventional operations. In [4], the complexity of

merged two’s complement multiplier-adders is

analyzed. It also reveals that merged arithmetic is

suitable for portable and low-power designs such as

wireless communications.

If the matrix multiplication is performed in

parallel, the communication network often becomes a

bottleneck. Many high performance algorithms and

architectures have been proposed to accelerate matrix

multiplication [11], [12], [15], [18], [23]. Recently,

field-programmable gate arrays (FPGAs) also

become an attractive option for matrix multiplication

[2], [14]. Matrix multiplication can be done most

efficiently by an FPGA which is shown in [19].

Besides, the bit-level matrix multiplier has been

proposed by Grover et al. [11]. In the bit-level design,

the bits of a word do not have to be processed as a

unit and the bits of individual weight columns can be

computed simutaneously. Thus, it is faster than the

word-level design.

The merged arithmetic dissolves the boundaries

between discrete arithmetic elements and treats them

as a whole computing block. The scalar (inner)

product macrocell which exploits merged arithmetic

has been proposed with substantial improvement in

the deep submicron area [10]. The multiply

accumulate units (MAC units) utilizing merging

technique to enhance tree architecture for further

speed improvement has been proposed by Fayed et al.

[6]. A variation of merged arithmetic is applied to the

implementation of the wavelet transform [3]. The use

of merged arithmetic in the FIR filters and IIR lattice

filters are investigated in [7], [8], [22]. In [22], a

hybrid CSA tree is proposed to shorten the width of

Carry Propagation Adder (CPA) to reduce the CPA

time. In high performance design, however, the Carry

Lookahead Adder (CLA) is usually used to achieve

high speed instead of CPA. The hybrid CSA tree

following by CLA is discussed and compared to other

approaches later. The new combined approaches

which are used to reduce the partial product matrix

are also presented in this study.

The rest of this paper is organized as follows.

The previous results are discussed in Section 2.

Section 3 gives the result of our simulation. Finally,

the conclusions and future works are addressed in

Section 4.

2 Former Results

This section first considers the question of how

the multiplication would be fast computed, because

the multiplication dominates the whole computation

time. Second, the concept of the merged arithmetic is

introduced carefully.

2.1 Fast Multiplier

The multiplication of two numbers may be

divided into three major steps and the detailed

accounts of each step are explained in the following.

1. The partial products generation.

2. To sum up all partial products until only two

vectors remain which is often called the reduction

of partial product matrix.

3. The addition of the remaining two vectors.

Fig. 1(a) shows multiplying two unsigned 4-bit

binary numbers. In the first step, a 2-input AND gate

is used to generate one partial product bit. One input

is derived from one bit of the multiplicand, and

another input is derived from one bit of the multiplier.

Sixteen partial product bits in this example are

generated in the corresponding weighted columns and

form four partial products. After generating the

partial product matrix, the partial products are

continually summed up by any summation

approaches. The height of the partial product matrix

is decreased until two vectors left in the course of

summation. Then, the final result is computed from

adding these two vectors. For simple representation,

the multiplication of two unsigned 4-bit binary

numbers is also depicted by the dot notation, where

one dot represents one bit as shown in Fig. 1(b). The

dot in the partial product matrix indicates the output

of the 2-input AND gates in partial product

generation. In the rest of this paper, the dot notation

is used frequently.

To think over the three steps of multiplication,

the implementation of the first step is the simplest

one and is hard to make a change for acceleration. In

order to get a high speed multiplier, the second step

and the final step are both the major courses what we

stress on in the subsequent discussion.

For speeding up the second step of

multiplication, the Wallace tree or the Dadda tree is

usually choused to reduce partial products to two

vectors in a fast manner [5], [21]. The idea of both is

that the carry propagation delay is eliminated during

partial product reduction by strategically using

carry-save adders. A carry-save adder (CSA) does not

propagate the carry-out to a higher adder. It receives

three multi-bit inputs and outputs two multi-bit

outputs without waiting the carry-out from a lower

adder. The Wallace tree and Dadda tree are the

tree-structured multipliers which have the better

performance than other structured-multipliers. The

speed of the multipliers such as array-structured

multipliers and iterative-structured multipliers are

both mightily influenced by the length of the input

numbers. In short, tree-structured multipliers are the

emphases of this study and they provide the basic

mechanism for merged arithmetic. Please see [17] for

details of other multipliers.

2.1.1 Wallace Tree

By using the Wallace tree for fast reduction,

there are three reduction steps in each reduction stage

that are listed below. The reduction is finished while

two vectors are left in the partial product matrix.

1. At each weighted column, the maximum

full-adders (FAs) will be used to reduce three bits

to two output bits which are the sum bit in the

same column and the carry-bit to the next most

significant column.

2. If there are two bits left after step 1, the

half-adder (HA) will be used to reduce two bits to

one sum bit and one carry-out bit similarly.

3. If there is single bit left after step 1, the single bit

will be used in the next stage.

The main idea of the Wallace tree is to reduce

partial product as soon as possible by using a large of

FAs or HAs. Taking a close look to Fig. 2(a), the FAs

and HAs are used as possible as they are in every

weighted column. It reveals that the Wallace tree

minimizes the stage of reduction but maximizes the

cost used in reduction process.

2.1.2 Dadda Tree

Unlike the Wallace tree, however, the Dadda

tree does as few reductions as possible (see Fig. 2(b)).

The reduction rule of Dadda tree is determined by

Table 1 which is constructed by a recurrence formula

given below. In Table 1, the maximum number of

operands means that the number of dots in the highest

weighted column and one stage is equal to a FA delay

or a HA delay. The number of operands n(h) can be

defined as

n(h) = ⎣3n(h−1)/2⎦, where h∈N and n(0)=2 (1)

By using the Dadda tree for fast reduction,

there are three steps in each reduction stage that are

listed below. The reduction is finished while two

vectors are left in the partial product matrix.

1. To find the maximum operands nmax among all

weighted columns.

2. To get the largest n(h) from Table 1 which is less

than the nmax.

3. For each weighted column, to reduce its operands

to n(h) by using the smallest FAs and perhaps one

HA is needed to accomplish it.

In each column, the number of stages needed is

given by Table 1. Taking Fig. 2(b) as an example, the

maximum number of operands in the highest column

(middle column) has four operands, so the first stage

is to reduce the number of operands to the next lower

n(h) value (i.e., 3). In the following stages, the two

rows of dots are obtained by applying the same

approach.

According to Table 1, reducing 10 operands

and 13 operands has the same reduction stages (five

stages). The number of FAs and HAs in every stage

depend on the recurrence formula severely. From this

point of view, the Dadda tree would save the

unnecessary cost better than the Wallace tree.

Nonetheless, the reduction stages of the Dadda tree

may not be equal to the ones of the Wallace tree all

the time and may have one extra stage in some cases.

In general, the Wallace tree optimizes speed,

whereas the Dadda tree gives less area. As shown in

Fig. 2, the total stages required for Wallace tree and

Dadda tree are the same, but the cost of Wallace tree

is greater than Dadda tree. Four FAs and six HAs are

used in Fig. 2(a), and three FAs and three HAs are

used in the Fig. 2(b).

2.1.3 Fast Adder

Finally, carry-look-ahead adder (CLA) will be

used to sum up the two vectors after above reduction.

The CLA will predict the former carry out in advance

by the computation result from input. This is why the

CLA outperforms than CPA in the high performance

design. Please see [17] for detailed introduction.

2.2 2’s-complement Multiplication

So far, we have seen how the unsigned

multiplication can be computed rapidly. This section

discusses the 2’s complement multiplication. In [17],

when one is multiplying 2’s-complement numbers

directly, each of the partial products to be added is a

signed number. Thus, for the CSA tree to yield the

correct sum of its inputs, each partial product must be

sign-extended to the width of the final product. It

reveals that sign-extend 2’s complement

multiplication will lead redundant cost in the

hardware.

Baugh and Wooley have proposed a more

efficient approach, called modified Baugh-Wooley

method, for 2’s complement multiplication [1]. In

order to understand this approach, Fig. 3 illustrates

this method. Fig. 3(a) shows the multiplication of two

2’s complement numbers. Because of the negative

weight of the sign bit in a 2’s complement number,

some entries are depicted with ‘−’ signs. To avoid

summing up these negative weight bits, a transfer

formula is given as −z = −(1− z) = z −1, z∈{0, 1}.

After applying this formula to the negative

weight bits in Fig. 3(a), each negative weight bit will

be replaced with a 1’s complement positive bit and

negative one. All of the negative ones will be

simplified to a coefficient which is depicted at the

bottom of Fig. 3(b). It is clear that the modified

Baugh-Wooley method never increase the column

height and the time required in reduction process isn’t

increased at all. On the whole, this approach is more

efficient and less cost than sign-extended 2’s

complement multiplication.

2.3 Merged Arithmetic

In [9] and [20], merged arithmetic has been

proposed to do fast computation in inner product

function. Merged arithmetic is faster than

conventional design because it dissolves the

boundaries between the multiplication and addition

by computing these two functions at once. The Fig.

4(a) shows the conventional design of a two-term

4-bit inner product. Two multipliers and one adder

are needed in this conventional structure.

Recall that the second step of the multiplication

mentioned in Subection 2.1 is to sum up all partial

products until two vectors left. For considering the

products of multipliers are added eventually, the

addition of these two products can be computed

earlier (in the second step of the multiplication). Fig.

4(b) shows the merged arithmetic of a two-term 4-bit

inner product. All partial product matrices from each

product is summed up altogether by using fast tree

reductions, where the fast compression of Dadda’s

method is proposed by [9] due to its optimal circuit.

The fast compression is illustrated in Fig. 5. In this

example, 8 bits can be reduced into 4 bits (instead of

6) since there is no carry-in from the least significant

column of bits. The inner product result is the same

obtained by Fig. 4(a) and Fig. 4(b), but the latter

leads one carry-propagate saving which is at the

bottom of the reduction stages of the conventional

multiplier and also minimizes the number of gate

counts.

In [9], an alternative to performing above fully

merged arithmetic is to keep the individual

multipliers separate by performing the column

reduction only within the individual multipliers until

the partial product matrix is reduced to two

equivalent rows. Then, a multi-input adder is used for

summing up the two row matrix from each multiplier

altogether instead of a conventional two-input adder

as shown in

Fig. 6. This alternative approach is called

partially merged arithmetic and its advantage is in

much more regular structure. Nevertheless, the

hardware reduction and speed gains are less than

fully merged arithmetic. The result in [9] shows us

that for all vector sizes less than 16, and word lengths

between 2 and 32 bits, at most two additional full

adder delays result from not using the fully merged

arithmetic.

In above paragraphs, unsigned multiplications

are discussed. In [4], the complexity of merged two’s

complement multiplier-adder has been proposed. The

efficient modified Baugh-Wooley method is used in

the composite bit product matrix. Fig. 7 illustrates an

example of a 2’s complement two-term inner product.

The black dots are identical to those in unsigned

multiplications, and the white dot indicates the output

of a two-input NAND gate in the partial product

generation. The 1’s indicate the logical value ONE’s

which is the result of combining two coefficients at

the bottom of each 2’ complement multiplier (see Fig.

3(b)).

Choe and Swartzlander figured out that merged

arithmetic reduces hardware complexity proportional

to the number of inner-product terms [4]. Moreover,

it improves slightly more for smaller word sizes. In

particular, it is suitable for low-power designs such as

wireless communication and digital-camera

applications.

A hybrid CSA tree for merged arithmetic

architecture of FIR Filter has been proposed in [22].

The Dadda strategy uses less hardware cost but may

result in a longer CPA and more reduction stages than

Wallace. On the other hand, the Wallace strategy uses

more hardware cost and shorter CPA. The hybrid tree

reduction scheme is a combination of the Wallace

strategy and the Dadda strategy. The merged

operation block in FIR filters is portioned into two

sub-blocks. The Wallace and Dadda strategy is

applied on each sub-block independently. As shown

in Fig. 8(a), the Wallace strategy is applied to the

right sub-block of the arrow, the Dadda strategy is

applied to the left sub-block of the arrow. For the

right sub-block, the purpose is to reduce each column

to a single-bit output. This leads a shorter CPA which

equals the result if only the Wallace strategy is

applied (see Fig. 8(b)) and with a small amount of

hardware in excess to that required by the Dadda tree

structure. Thus, the partition line, i.e. the boundary

the arrow points, must be known before the

computation. The partition line is found by the output

of the Wallace tree for the given block in advance.

Taking the Fig. 8(b) for explanation, the output of the

Wallace tree has four consecutive single-bit columns

at the least significant columns so that the partition

line is decided at the left of these columns.

However, in some cases, the Dadda structure

yields one extra-stage than the Wallace structure. The

combination of both structures of the left sub-block is

preferred in order to maintain the same latency as the

Wallace structure.

2.4 Fixed-Point Number System

This work focuses on the fixed-point number

system. In [13], fixed-point arithmetic is usually used

when hardware cost and speed is limited. Specialized

DSP systems typically use fixed-point number

representation for lower cost and greater speed. For

basic signal processing computations such as digital

filters and FFTs can be implemented in fixed-point

representation with good performance. However,

finite-precision quantization issue must be noticed

carefully because fixed-point system offers the

limited range and/or precision representation.

An n-bit fixed-point number k can be

partitioned into three parts, one sign bit, p-bit integer

part and (n−p−1)-bit fractional part. The sign bit is set

to zero when k is positive, and is set to one when k is

negative. The value for k = {kn-1kn-2…k0} is expressed

as

−2pkn−1 +
n–2

Σ
i=0

2i–n+p+1. (2)

When multiplying two fixed-point n-bit

numbers, the computational result would be 2n-bit

width which should be still n-bit number in some

fixed-point system actuality. The least significant

n−p−1 bits and the most significant p+1 bits should

be cancelled out because the 2n-bit result is out of the

range that can be properly represented in the given

data size. Thus, the overflow error and the truncation

error will be inevitable. The overflow error must be

carefully handled since it will make the result

incorrect. The suitable truncation approach must be

made up for the errors through truncating.

3 Our Result

In [9] and [20], merged arithmetic has been

proposed to speed up the inner product with lower

gate counts and reduction stages. In [22], a hybrid

CSA tree has been proposed to shorten the width of

the final CPA. Notably, their results are only

compared to conventional designs. It is helpless for

users who want to design such systems with different

considerations. This work tries to find the most

suitable merging approach according to the user’s

desired demand. Moreover, the hardware

interconnection is also outputted for further

implementation. Finally, this work also shows how to

construct the improved matrix multiplier by utilizing

such merged inner product.

In this section, the word length is denoted by N

and the vector size is denoted by M. Our simulation

inputs take N from 2 to 64 and M from 1 to 16. The

outputs are the results of N-bit M-term merged inner

product. The results of the simulation include the

delay, cost, delay × cost and the hardware

interconnection.

3.1 The Estimation Method

In this work, three metrics are used for our

simulation result. The time delay, gate count cost and

delay × cost are adopted in general. To estimate these

three metrics, a widely accepted approach is

described in the following. This method takes any

monotonic gate (e.g. AND, NOR, etc.) has one gate

delay and cost excluding the XOR gate which has

two gate delays and costs. Any multi-input gate is

transformed to a series of multiple 2-input monotonic

gates for evaluation. For example, a four-input OR is

transformed into using three 2-input OR gates. The

delays and costs of some arithmetic blocks are given

in Table 2 which will be used latter. In our estimation

method, CLA is constructed with 2-bit lookahead

blocks where n denotes the input data width of CLA

and the estimation is penalizing by using two input

gates.

3.2 Simulation Results of the Previous Approaches

In [9], the Dadda tree with fast reduction is

applied for the fully merged arithmetic. According to

our simulation results, the values of the Dadda tree

with fast reduction are chiefly the same as those of

the Dadda tree without fast reduction excepting some

cases. Take a more look on these different cases, the

delay and cost of the Dadda tree with fast reduction

has saved at most one FA delay and 12 costs than

without fast reduction respectively. In brief, the

Dadda tree with fast reduction isn’t worst than

without fast reduction for the delay and cost metrics.

This work also compares the delay and cost

between the Wallace tree and the Dadda tree with fast

reduction in our simulation. The result shows that the

delay of the Wallace tree is smaller than or equal to

the Dadda tree with fast reduction in most cases and

the former saves one FA delay or one HA delay than

the latter. There are still few cases (i.e. 11 cases)

where the delay of the Wallace tree is greater than the

Dadda tree with fast reduction and the former spends

one HA delay than the latter. However, the cost of the

Dadda tree with fast reduction is smaller than or

equal to the Wallace tree in most cases and the

difference between them is increasing as the N or M

increases approximately. For example, the difference

in cost is 168 when N = 16 and M = 2 and is 472

when N = 32 and M = 2. There are few cases where

the cost of the Dadda tree with fast reduction is

greater than the Wallace tree, but the difference is

small (i.e. the largest difference is 19). On the whole,

the simulation results reveal the similar situation

which has been discussed in Subsection 2.1.

In [22], the hybrid CSA strategy is applied for

reduction process followed by a CPA. In high

performance design, however, the Carry Lookahead

Adder (CLA) is usually used to achieve high speed

instead of CPA. It has not shown us that if a CLA is

applied for final addition after reducing the partial

product matrix to two vectors instead of a single-bit

output at the least significant columns. This inspires

us to do more simulation for comparing. The

combination of the Wallace reduction stages and the

Dadda reduction stages is also presented to make the

total reduction stages as the Wallace-structured in

[22]. Therefore, more explicit combinations are

simulated to realize its affect. For the user’s demands

are not the same all the time, applying fixed strategy

in all designs is inadvisable. Hence, more work must

be taken subsequently.

3.3 The Reduction Methods on Demand

As mentioned in Section 2, the former

reduction approaches include the Dadda strategy with

and without fast reduction, the Wallace strategy, and

the hybrid CSA tree. Based on the strategies

mentioned above, we attempt to do some simulation

which has not been done yet. The stages of the

Wallace tree and the Dadda tree with fast reduction

are combined with all possible combinations. This

combined strategy is to apply the Wallace strategy

first and the Dadda strategy with fast reduction later.

One of the extreme cases is the pure Wallace tree and

the other is the pure Dadda tree with fast reduction.

The combined strategy is also applied to understand

the affect of the hybrid CSA tree. This will be

explained carefully later. After reducing partial

product matrix to two vectors, a CLA with 2-bit

lookahead generator is used for the final addition.

One of the reduction methods is denoted by

D(ω, F.D.), where ω is the number of reduction

stages by using the Wallace tree only and F.D. means

the Dadda tree with fast reduction. In the reduction

with D(ω, F.D.), first apply the Wallace strategy for ω

stages and then apply the Dadda strategy with fast

reduction until two vectors left. When ω is zero, the

combined method is a pure Dadda tree with fast

reduction. On the other hand, the combined method is

a pure Wallace tree if ω equals the number of stages

needed in the Wallace-structured reduction. The

number of stages needed in the Wallace-structured

reduction is denoted by ωmax in this paper.

Another combined method is denoted by H(ω,

F.D.), where ω and F.D. are the same meaning with

D(ω, F.D.) but are only applied on the left part of the

arrow (see Subsection 2.3). In the reduction with H(ω,

F.D.), first apply the Wallace strategy for ω stages

and apply the Dadda strategy with fast reduction on

the left part of the arrow. When ω is zero, the right

part of the arrow is a pure Wallace tree and the left

part of the arrow is a pure Dadda tree with fast

reduction. The reduction tree is a traditional Wallace

tree with single-bit output at the least significant

columns if ω equals to ωmax.

All reduction approaches for the merged

arithmetic architecture are listed in the following.

1. Applying the Wallace strategy to reduce partial

product matrix to two vectors left. (D(ωmax, F.D.))

2. Applying the Dadda strategy with fast reduction

to reduce partial product matrix to two vectors left.

(D(0, F.D.))

3. Applying the combined method D(ω, F.D.) to

reduce partial product matrix to two vectors left.

4. Applying the Wallace strategy to reduce partial

product matrix to single-bit output at least

significant columns. (H(ωmax, F.D.))

5. Applying the Wallace strategy to reduce partial

product matrix in the right part of the arrow (in

[22]) and applying the Dadda strategy with fast

reduction in the left part. (H(0, F.D.))

6. Applying the Wallace strategy to the right part of

the arrow (in [22]) and applying the third

approach to the left part of the arrow. (H(ω, F.D.))

After applying any of the above methods, the

CLA with 2-bit lookahead generator is used for final

two vectors addition. The items listed above reveal

that these two reduction methods including the

former approaches which are discussed in Section 2

and the new combined approaches which have not

been tried yet. The affect of the hybrid CSA tree can

be understood by comparing D(ω, F.D.) and H(ω,

F.D.).

Fig. 9 shows the flow of our simulation

program. First, N, M and D (user’s demand) are

assigned. Recall that the ωmax must be obtained before

performing the functions F1 and F2. Two ωmaxs

outputted from the functions Wallace1 and Wallace2

have the unequal meaning. The function Wallace1

results two vectors (carry and sum vectors) but the

function Wallace2 results single vector at the least

significant bits instead of two vectors. By the way,

the combined methods can be well computed for a

reasonable ω. Next, we can perform the combined

methods and save the results. Finally, all saved results

from function F1 and F2 are compared.

For the user’s demand is changeable, we offer

the best result depending on the user’s demand. When

the N and M are given, we will output the best

approach according to the designate demand. It’s

helpful for the users who want to design such systems

because the simulation result obtained in Subsection

3.2 shows that none of them is always better than

others and some of them are not done. Our results are

shown in the next section.

3.4 Our Simulation

About three metrics in our simulation, the delay

demand is denoted by 1, the cost demand is denoted

by 2 and the delay × cost demand is denoted by 3.

For N=8, M=4, the H(1, F.D.) is the best approach on

delay × cost demand as illustrated in Fig. 10. If the

delay demand is selected, the H(1, F.D.) will be

outputted at the bottom line. The H(0, F.D.) will not

be outputted because its cost is not the lowest among

all H(ω, F.D.) and D(ω, F.D.) with the same delay.

Identically, the H(1, F.D.) will be outputted at bottom

line if the cost demand is selected. The delay values

in Fig. 10 exclude the delay of generating partial

product matrix and so do the cost values. Those

values can be ignored because both of them are fixed

values as N and M unchangeable and are necessarily

included in any combined approach.

The hardware interconnection of H(1, F.D.) is

also shown in Fig. 11. Each line behalves a reduction

stage of the H(1, F.D.), the order of each row is the

stage order in reduction process. The figure fingers

out that it requires eight stages to finish the reduction.

The delay of each stage is a FA delay or a HA delay

relying on the usage. The right columns of each row

are the least significant columns. In each pair

parentheses (x, y) at i-th row, x means the number of

FAs which are used in stage i and y means the

number of HAs which are used in stage i. The (0, 0)

indicates that neither FAs nor HAs are used for the

reduction. The hardware interconnections of CLAs

are not shown in Fig. 11.

This work also makes efforts to realize the

optimization of the proposed combined methods.

Furthermore, we want to know that the best method

for delay demand is equivalent to the best method for

cost demand or not. As the demand is delay, the

outputted delay and cost are denoted by

MIN_DELAY and COST respectively. As the

demand is cost, the outputted delay and cost are

denoted by DELAY and MIN_COST respectively.

One of the simulation results is on the viewpoint of

DELAY minus MIN_DELAY and another is on

COST minus MIN_COST. In most cases of both

viewpoints, the difference value is zero. It means that

the combined method outputted by our program

results in the most optimal method. Nevertheless,

there are few cases that the difference value is

non-zero. It is impossible to get the most optimal

method because the delay demand and cost demand

are the trade-off problem in such cases. Minimizing

one of them will maximize the other. Besides, the

non-zero values are in the range of the Wallace tree

and the Dadda tree with fast reduction.

3.5 Improved Matrix Multiplier

The proposed matrix multiplier is based on the

merged arithmetic approach mentioned in Subsection

3.3. The traditional multipliers and accumulators are

dissolved and merged into a block to perform

inner-product operation. Because the matrix

multiplication has a large of inner-product operations

indeed, the matrix multiplier can be improved by

utilizing suitable merging approach. In brief, the

improved matrix multiplier bases on the acceleration

of the merged inner product function. One example

of designing such kind of the matrix multiplier is

described below.

The architecture of the improved matrix

multiplier (as shown in Fig. 12) is similar to the

architecture proposed by Huang and Duh [12]. The

structure of an array processor includes a control unit

(CU), a control unit memory (CUM), processor

elements (PEs), processor element memories (PEMs),

and the communication network. CU is dedicated to

process program. It fetches instructions from CUM

and passes data to PEMs for PEs. The data transfer

between PEMs is through the communication

network. However, each PE in our design has merged

M multiplications and M−1 additions into one merged

computing block and has PEMs for storing operands

and results. In addition, the width of each bus is M×N

bits. The circuit of the computing block is got from

the simulation result of Subsection 3.3 according to

the given demand. Data on each X bus or Y bus can

be simultaneously shard by M processor elements;

and every processor among these M processors can

be outgoing data. The data on the Xi bus, ai0, ai1, ai2,

ai3,…, ai(M-1) can be simultaneously used by

processors PEi,0,…, PEi,M-1; and the data on the Yj bus,

b0j, b1j, b2j, b3j,…, b(M-1)j, can be simultaneously used

by processors PE0,j ,…, PEM-1,j. Therefore,

multiplying two M×M matrices exists no time delay

for data transfer.

4 Concluding Remarks

The matrix multiplier is widely used in many

scientific computations. Due to the enormous power

and time spend in matrix multiplication, many efforts

are done to achieve high performance. In general, a

parallel processing architecture is often adopted for

speeding up. Besides the parallel computing on

matrix multiplier, merged arithmetic has been

proposed to speed up inner product with lower cost

and delay. In the bit-level design, individual bits of a

word can be parallel processed. Thus, it is desirable

when very high performance is needed.

This work concentrates on the inner product

operations because the basic operations of matrix

multiplication comprise a large of inner products. The

partial product reduction of the merged inner product

is performed by using fast tree strategies such as the

Wallace tree, the Dadda tree with and without fast

reduction and the CSA hybrid tree. In this work, a

combined strategy is proposed to find the best

reduction approach according to user’s demand. This

combined method includes the former methods and

some combined methods which have not been done

before. Moreover, when N and M are given (the word

length is denoted by N and the vector size is denoted

by M), the time delay, hardware cost and

multiplication of both are given in the simulation

result. Besides three metrics are outputted, the

corresponding hardware interconnection is also

outputted for further implementation.

In this study, fixed-point matrix multiplier is

discussed. For considering the high precision and

large range of data in some applications,

floating-point representation is more suitable than

fixed-point representation. But the hardware

resources and the execution time used to perform

floating-point operations are greater than fixed-point

operations very much. The design of efficient

floating-point hardware is a difficulty challenge. This

leads the floating-point hardware in an expensive

choice. How to accelerate floating-point matrix

multiplier by applying merged arithmetic is what we

concern in the future.

Some rough ideas are presented in the

following. For accelerating the floating-point

multiplication, the merged arithmetic can be applied

to the multiplication of two significands. For addition

of multiple floating-point numbers, all of the numbers

can be merged to one time addition. For dealing with

the floating-point inner product, take two-term inner

product as an example. The exponential computation

includes two additions and one subtraction that can

be merged to perform at once. The individual product

of each term may not be available in fact and the

CSA tree can be applied to the partial product matrix

to reduce it to two rows left. This leads one time

carry-propagate saving. Finally, sum up these four

rows altogether under the correct shift of each

exponent.

References

[1] C. R. Baugh, and B. A. Wooley, "A two’s
complement parallel array multiplication
algorithm," IEEE Transaction on Computers,
vol. C-22, pp. 1045-1047, 1973.

[2] F. Bensaali, A. Amira, and A. Bouridane,
"Accelerating matrix product on reconfigurable
hardware for image processing applications,"
IEE Proceedings of Circuits, Devices and
Systems, vol. 152, no. 3, pp. 236-246, 2005.

[3] G. Choe and E. E. Swartzlander, Jr., "Merged
Arithmetic for computing wavelet transforms",
in Proceedings of the 8th Great Lakes
Symposium on VLSI, 1998, pp. 196-201.

[4] G. Choe and E. E. Swartzlander, Jr.,
"Complexity of merged two’s complement
multiplier-adders," in Proceedings of the 35th
IEEE Midwest Symposium on Circuits and
Systems, 1999, vol. 1, pp. 384-387.

[5] L. Dadda, "Some schemes for parallel
multipliers," Alta Frequenza, vol. 34, pp.
349-356, 1965.

[6] A. Fayed, W. Elgharbawy and M. Bayoumi, "A
Data Merging Technique High-Speed
Low-Power Multiply Accumulate Units, " in
Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, 2004,
pp. V- 145-8.

[7] K. A. Feiste and E. E. Swartzlander, Jr.,
"High-speed VLSI implementation of FIR lattice
filters," in Proceedings of the 29th Asilomar
Conference on Signals, Systems and Computers,
1995, pp. 127-131.

[8] K. A. Feiste and E. E. Swartzlander, Jr.,
"High-speed VLSI implementation of IIR lattice
filters," in Proceedings of the 30th Asilomar
Conference on Signals, Systems and Computers,
1996, pp. 1057-1062.

[9] K. A. Feiste and E. E. Swartzlander, Jr., "Merged
arithmetic revisited," in Proceedings of the IEEE
Workshop on Signal Processing Systems, 1997,
pp. 212-221.

[10] J. Gu, C.-H. Chang and K.-S. Yeo, "Algorithm
and Architecture for a High Density, Low Power
Scalar Product Macrocell," IEE Proceedings on
Computer Digital Technology, vol. 151, no. 2,
pp. 161-172, 2004.

[11] R. S. Grover, W. Shang, and Q. Li, "Bit-level
two’s complement matrix multiplication,"
Integration, the VLSI Journal, vol. 33, no. 1, pp.
3-21, 2002.

[12] H.-P. Huang and D.-R. Duh, "Fast computation
algorithm for robot dynamics and its
implementation," in Proceedings of the IEEE
International Symposium on Industrial
Electronics, 1992, pp. 352-356.

[13] D. L. Jones, Fixed-Point Number Representation,
Connexions Web site. http://cnx.org/content/

m11930/1.2/, Dec 28, 2004.
[14] J.-W. Jang, S. B. Choi, and V. K. Prasanna,

"Energy- and time-efficient matrix
multiplication on FPGAs," IEEE Transaction on
Very Large Scale Integration Systems, vol. 13,
no. 11, pp. 1305-1319, November 2005.

[15] R. Lin, "A reconfigurable low-power high-
performance matrix multiplier design," in
Proceedings of the IEEE First International
Symposium on Quality Electronic Design, 2000,
pp. 321-328.

[16] E. L. Leiss, Parallel and Vector Computing,
McGraw-Hill, New York, 1995.

[17] B. Parhami, Computer Arithmetic: Algorithms
and Hardware Designs, Oxford Univ. Press,
New York, 2000.

[18] V. Y. Pan, "How can we speed-up matrix
multiplication?" SIAM Review, vol. 26, no. 3,
pp.393-415, 1984.

[19] R. Scrofano, S. Choi and V. K. Prasanna,

"Energy Efficiency of FPGAs and
Programmable Processors for Matrix
Multiplication", in Proceedings of the IEEE
International Conference on Field-
Programmable Technology, 2002, pp. 422-425.

[20] E. E. Swartzlander, Jr., "Merged arithmetic,"
IEEE Transaction on Computers, vol. C-29, no.
10, pp. 946-950, October 1980.

[21] C. S. Wallace, "A suggestion for a fast
multiplier", IEEE Transaction on Electronic
Computing, vol. EC-13, pp. 14-17, 1964.

[22] Z. Ye and C.-H. Chang, "A hybrid CSA tree for
merged arithmetic architecture of FIR filter," in
Proceedings of the 3rd International Symposium
on Image and Signal Processing and Analysis,
2003, pp. 449-453.

[23] L. Zhuo and V. K. Prasanna, "High performance
linear algebra operations on reconfigurable
systems," in Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, 2005.

×

(a)

×

(b)

Fig. 1. Unsigned 4×4 multiplication (a) in binary number and (b) in dot notation.

 (a) (b)

Fig. 2. The reduction trees. (a) The Wallace tree. (b) The Dadda tree.

Table 1 The Maximum Number of Operands n(h) for an h-Level Carry-Save-Adder Tree

Number of operands (n(h)) Number of stages (h)

2 0

3 1

4 2

6 3

9 4

13 5

19 6

28 7

42 8

63 9

94 10

×

(a)

×

(b)

Fig. 3. 2’s complement multiplier. (a) 2’s Complement Multiplier. (b) Modified Baugh-Wooley Method.

×
×

Merged
Arithmetic

Data Bus

 (a) (b)

Fig. 4. Merged arithmetic. (a) Traditional inner product. (b) Merged inner product.

Fig. 5. The Dadda tree with fast reduction.

×
×

Fig. 6. Partially merged arithmetic.

Fig. 7. The composite bit product matrix for merged 2’s complement two-term inner product.

 (a) (b)

Fig. 8. CSA tree reductions in [22]. (a) CSA tree reduction with hybrid structure. (b) CSA tree reduction

applying Wallace’s strategy.

Table 2 Delay and Cost of Some Arithmetic Blocks

 Delay Cost

Half-adder (HA) 2 3

Full-adder (FA) 4 7

CLA with 2-bit lookahead carry

generator

⎡ ⎤
⎡ ⎤ 4)1log(2

2)1log(21

2

2

+−×+
+−×+

n
n ⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤n

n

n

n
2

2

log
2

2
log

24)1log(2

6)1log(322

×+−×+

+−×+×

Fig. 9. The flow of our simulation program.

Fig. 10. Simulation result for N=8 and M=4.

Fig. 11. The hardware interconnection of H(1, F.D.) for N=8 and M=4.

Fig. 12. The architecture of the proposed matrix multiplier.

