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摘要 

矩陣乘法是科學與工程計算中常見的運算之

一，許多人皆為了能增進其計算效率而努力。近幾

十年以來，為了加速這類需要龐大計算量的運算，

平行處理不外乎為最佳的選擇。隨著硬體製造技術

的進步，選擇高速的處理器或是採用多個處理器來

執行這類型的運算也非常普遍。在此篇論文中，合

併運算將被包含在平行架構中進行。合併運算打破

個別的乘法器與加法器的界線，而將乘法與加法視

為一體同時執行。然而，在做個別乘積項的加法

時，並沒有任一個方法總是最好的。因此，我們提

出一個包含之前的方法和新的混合方式來尋找最

有效率的一種。有鑒於使用者對系統的考量並不唯

一，我們的模擬程式將輸出三種量測標準供使用者

選擇，分別是時間，成本和時間乘以成本。除此之

外，大致的硬體連接方式也被呈現於結果中，協助

之後的實作設計。對於追求高效能以及低成本的系

統設計中，此研究的成果應能提供莫大的幫助。 

關鍵詞：矩陣乘法，合併運算，定點運算，縮小部

分乘積矩陣 

Abstract 

Since matrix multiplication is one of the most 

used operations in science and engineering, a lot of 

efforts for improving its efficiency have been made 

greatly. To accelerate such enormous computing, 

parallel processing architectures are mostly 

considered by decades. For the advance of 

manufacturing technology, high clock rate processors 

or multiple processors are also used to speed up the 

computation. In this work, another approach called 

merged arithmetic is included into our parallel 

architecture. It dissolves the boundary between the 

individual multipliers and adders to perform multiple 

multiply and addition in parallel. However, none of 

the methods, which were presented previous for 

reducing partial product matrix, is absolutely better 

than others. This study proposes a combined method 

to find out the most efficient reduction. Respecting 

the user’s demand is not the same all the time; our 

simulation results include three metrics, delay, cost, 

and delay × cost. Moreover, the hardware 

interconnection for further implementation is also 

offered. It is very helpful for the design of such 

systems because a high performance throughput and 

low cost system are both what we concern. 

Keywords：Matrix multiplication, merged arithmetic, 

fixed-point arithmetic, partial product matrix 

reduction 

1 Introduction 

Matrix multiplication is widely used for solving 

numerical problems in many areas, such as signal 

processing, image processing, robotics, and computer 

graphics, etc [16]. It requires enormous computing 



power and long execution time during computation 

so that many researchers have tried to improve the 

performance of matrix multiplication [2]. It is very 

inefficient if the computation is done by software on 

the core central processing unit and the hardware 

implementation of such a processor is desirable [15]. 

For the advance of manufacturing technology, high 

clock rate processors or multiple processors are also 

used to speed up the computation. Hence, the 

hardware implementation of the matrix multiplier is 

an important issue on parallel processing. 

It is known that the inner product is the basis of 

the matrix multiplication.  Swartzlander introduced 

another concept called merged arithmetic for inner 

product function [9], [20]. It is introduced to reduce 

the implementation cost and improve the processing 

speed. In [17], when very high performance is needed, 

it is sometimes desirable, or even necessary, to build 

hardware structures to compute the function of 

interest directly without breaking it down into 

conventional operations. In [4], the complexity of 

merged two’s complement multiplier-adders is 

analyzed. It also reveals that merged arithmetic is 

suitable for portable and low-power designs such as 

wireless communications. 

If the matrix multiplication is performed in 

parallel, the communication network often becomes a 

bottleneck. Many high performance algorithms and 

architectures have been proposed to accelerate matrix 

multiplication [11], [12], [15], [18], [23]. Recently, 

field-programmable gate arrays (FPGAs) also 

become an attractive option for matrix multiplication 

[2], [14]. Matrix multiplication can be done most 

efficiently by an FPGA which is shown in [19]. 

Besides, the bit-level matrix multiplier has been 

proposed by Grover et al. [11]. In the bit-level design, 

the bits of a word do not have to be processed as a 

unit and the bits of individual weight columns can be 

computed simutaneously. Thus, it is faster than the 

word-level design. 

The merged arithmetic dissolves the boundaries 

between discrete arithmetic elements and treats them 

as a whole computing block. The scalar (inner) 

product macrocell which exploits merged arithmetic 

has been proposed with substantial improvement in 

the deep submicron area [10]. The multiply 

accumulate units (MAC units) utilizing merging 

technique to enhance tree architecture for further 

speed improvement has been proposed by Fayed et al. 

[6]. A variation of merged arithmetic is applied to the 

implementation of the wavelet transform [3]. The use 

of merged arithmetic in the FIR filters and IIR lattice 

filters are investigated in [7], [8], [22]. In [22], a 

hybrid CSA tree is proposed to shorten the width of 

Carry Propagation Adder (CPA) to reduce the CPA 

time. In high performance design, however, the Carry 

Lookahead Adder (CLA) is usually used to achieve 

high speed instead of CPA. The hybrid CSA tree 

following by CLA is discussed and compared to other 

approaches later. The new combined approaches 

which are used to reduce the partial product matrix 

are also presented in this study. 

The rest of this paper is organized as follows. 

The previous results are discussed in Section 2. 

Section 3 gives the result of our simulation. Finally, 

the conclusions and future works are addressed in 

Section 4. 

2 Former Results 

This section first considers the question of how 

the multiplication would be fast computed, because 

the multiplication dominates the whole computation 

time. Second, the concept of the merged arithmetic is 

introduced carefully. 

2.1 Fast Multiplier 



The multiplication of two numbers may be 

divided into three major steps and the detailed 

accounts of each step are explained in the following. 

1. The partial products generation. 

2. To sum up all partial products until only two 

vectors remain which is often called the reduction 

of partial product matrix. 

3. The addition of the remaining two vectors. 

Fig. 1(a) shows multiplying two unsigned 4-bit 

binary numbers. In the first step, a 2-input AND gate 

is used to generate one partial product bit. One input 

is derived from one bit of the multiplicand, and 

another input is derived from one bit of the multiplier. 

Sixteen partial product bits in this example are 

generated in the corresponding weighted columns and 

form four partial products. After generating the 

partial product matrix, the partial products are 

continually summed up by any summation 

approaches. The height of the partial product matrix 

is decreased until two vectors left in the course of 

summation. Then, the final result is computed from 

adding these two vectors. For simple representation, 

the multiplication of two unsigned 4-bit binary 

numbers is also depicted by the dot notation, where 

one dot represents one bit as shown in Fig. 1(b). The 

dot in the partial product matrix indicates the output 

of the 2-input AND gates in partial product 

generation. In the rest of this paper, the dot notation 

is used frequently. 

To think over the three steps of multiplication, 

the implementation of the first step is the simplest 

one and is hard to make a change for acceleration. In 

order to get a high speed multiplier, the second step 

and the final step are both the major courses what we 

stress on in the subsequent discussion. 

For speeding up the second step of 

multiplication, the Wallace tree or the Dadda tree is 

usually choused to reduce partial products to two 

vectors in a fast manner [5], [21]. The idea of both is 

that the carry propagation delay is eliminated during 

partial product reduction by strategically using 

carry-save adders. A carry-save adder (CSA) does not 

propagate the carry-out to a higher adder. It receives 

three multi-bit inputs and outputs two multi-bit 

outputs without waiting the carry-out from a lower 

adder. The Wallace tree and Dadda tree are the 

tree-structured multipliers which have the better 

performance than other structured-multipliers. The 

speed of the multipliers such as array-structured 

multipliers and iterative-structured multipliers are 

both mightily influenced by the length of the input 

numbers. In short, tree-structured multipliers are the 

emphases of this study and they provide the basic 

mechanism for merged arithmetic. Please see [17] for 

details of other multipliers. 

2.1.1 Wallace Tree 

By using the Wallace tree for fast reduction, 

there are three reduction steps in each reduction stage 

that are listed below. The reduction is finished while 

two vectors are left in the partial product matrix. 

1. At each weighted column, the maximum 

full-adders (FAs) will be used to reduce three bits 

to two output bits which are the sum bit in the 

same column and the carry-bit to the next most 

significant column. 

2. If there are two bits left after step 1, the 

half-adder (HA) will be used to reduce two bits to 

one sum bit and one carry-out bit similarly. 

3. If there is single bit left after step 1, the single bit 

will be used in the next stage. 

The main idea of the Wallace tree is to reduce 

partial product as soon as possible by using a large of 

FAs or HAs. Taking a close look to Fig. 2(a), the FAs 

and HAs are used as possible as they are in every 



weighted column. It reveals that the Wallace tree 

minimizes the stage of reduction but maximizes the 

cost used in reduction process. 

2.1.2 Dadda Tree 

Unlike the Wallace tree, however, the Dadda 

tree does as few reductions as possible (see Fig. 2(b)). 

The reduction rule of Dadda tree is determined by 

Table 1 which is constructed by a recurrence formula 

given below. In Table 1, the maximum number of 

operands means that the number of dots in the highest 

weighted column and one stage is equal to a FA delay 

or a HA delay. The number of operands n(h) can be 

defined as 

n(h) = ⎣3n(h−1)/2⎦, where h∈N and n(0)=2 (1) 

By using the Dadda tree for fast reduction, 

there are three steps in each reduction stage that are 

listed below. The reduction is finished while two 

vectors are left in the partial product matrix. 

1. To find the maximum operands nmax among all 

weighted columns. 

2. To get the largest n(h) from Table 1 which is less 

than the nmax. 

3. For each weighted column, to reduce its operands 

to n(h) by using the smallest FAs and perhaps one 

HA is needed to accomplish it. 

In each column, the number of stages needed is 

given by Table 1. Taking Fig. 2(b) as an example, the 

maximum number of operands in the highest column 

(middle column ) has four operands, so the first stage 

is to reduce the number of operands to the next lower 

n(h) value (i.e., 3). In the following stages, the two 

rows of dots are obtained by applying the same 

approach. 

According to Table 1, reducing 10 operands 

and 13 operands has the same reduction stages (five 

stages). The number of FAs and HAs in every stage 

depend on the recurrence formula severely. From this 

point of view, the Dadda tree would save the 

unnecessary cost better than the Wallace tree. 

Nonetheless, the reduction stages of the Dadda tree 

may not be equal to the ones of the Wallace tree all 

the time and may have one extra stage in some cases. 

In general, the Wallace tree optimizes speed, 

whereas the Dadda tree gives less area. As shown in 

Fig. 2, the total stages required for Wallace tree and 

Dadda tree are the same, but the cost of Wallace tree 

is greater than Dadda tree. Four FAs and six HAs are 

used in Fig. 2(a), and three FAs and three HAs are 

used in the Fig. 2(b).  

2.1.3 Fast Adder 

Finally, carry-look-ahead adder (CLA) will be 

used to sum up the two vectors after above reduction. 

The CLA will predict the former carry out in advance 

by the computation result from input. This is why the 

CLA outperforms than CPA in the high performance 

design. Please see [17] for detailed introduction. 

2.2 2’s-complement Multiplication 

So far, we have seen how the unsigned 

multiplication can be computed rapidly. This section 

discusses the 2’s complement multiplication. In [17], 

when one is multiplying 2’s-complement numbers 

directly, each of the partial products to be added is a 

signed number. Thus, for the CSA tree to yield the 

correct sum of its inputs, each partial product must be 

sign-extended to the width of the final product. It 

reveals that sign-extend 2’s complement 

multiplication will lead redundant cost in the 

hardware. 

Baugh and Wooley have proposed a more 

efficient approach, called modified Baugh-Wooley 

method, for 2’s complement multiplication [1]. In 

order to understand this approach, Fig. 3 illustrates 

this method. Fig. 3(a) shows the multiplication of two 



2’s complement numbers. Because of the negative 

weight of the sign bit in a 2’s complement number, 

some entries are depicted with ‘−’ signs. To avoid 

summing up these negative weight bits, a transfer 

formula is given as −z = −(1− z ) = z −1, z∈{0, 1}. 

After applying this formula to the negative 

weight bits in Fig. 3(a), each negative weight bit will 

be replaced with a 1’s complement positive bit and 

negative one. All of the negative ones will be 

simplified to a coefficient which is depicted at the 

bottom of Fig. 3(b). It is clear that the modified 

Baugh-Wooley method never increase the column 

height and the time required in reduction process isn’t 

increased at all. On the whole, this approach is more 

efficient and less cost than sign-extended 2’s 

complement multiplication. 

2.3 Merged Arithmetic 

In [9] and [20], merged arithmetic has been 

proposed to do fast computation in inner product 

function. Merged arithmetic is faster than 

conventional design because it dissolves the 

boundaries between the multiplication and addition 

by computing these two functions at once. The Fig. 

4(a) shows the conventional design of a two-term 

4-bit inner product. Two multipliers and one adder 

are needed in this conventional structure. 

Recall that the second step of the multiplication 

mentioned in Subection 2.1 is to sum up all partial 

products until two vectors left. For considering the 

products of multipliers are added eventually, the 

addition of these two products can be computed 

earlier (in the second step of the multiplication). Fig. 

4(b) shows the merged arithmetic of a two-term 4-bit 

inner product. All partial product matrices from each 

product is summed up altogether by using fast tree 

reductions, where the fast compression of Dadda’s 

method is proposed by [9] due to its optimal circuit. 

The fast compression is illustrated in Fig. 5. In this 

example, 8 bits can be reduced into 4 bits (instead of 

6) since there is no carry-in from the least significant 

column of bits. The inner product result is the same 

obtained by Fig. 4(a) and Fig. 4(b), but the latter 

leads one carry-propagate saving which is at the 

bottom of the reduction stages of the conventional 

multiplier and also minimizes the number of gate 

counts. 

In [9], an alternative to performing above fully 

merged arithmetic is to keep the individual 

multipliers separate by performing the column 

reduction only within the individual multipliers until 

the partial product matrix is reduced to two 

equivalent rows. Then, a multi-input adder is used for 

summing up the two row matrix from each multiplier 

altogether instead of a conventional two-input adder 

as shown in 

Fig. 6. This alternative approach is called 

partially merged arithmetic and its advantage is in 

much more regular structure. Nevertheless, the 

hardware reduction and speed gains are less than 

fully merged arithmetic. The result in [9] shows us 

that for all vector sizes less than 16, and word lengths 

between 2 and 32 bits, at most two additional full 

adder delays result from not using the fully merged 

arithmetic. 

In above paragraphs, unsigned multiplications 

are discussed. In [4], the complexity of merged two’s 

complement multiplier-adder has been proposed. The 

efficient modified Baugh-Wooley method is used in 

the composite bit product matrix. Fig. 7 illustrates an 

example of a 2’s complement two-term inner product. 

The black dots are identical to those in unsigned 

multiplications, and the white dot indicates the output 

of a two-input NAND gate in the partial product 

generation. The 1’s indicate the logical value ONE’s 



which is the result of combining two coefficients at 

the bottom of each 2’ complement multiplier (see Fig. 

3(b)). 

Choe and Swartzlander figured out that merged 

arithmetic reduces hardware complexity proportional 

to the number of inner-product terms [4]. Moreover, 

it improves slightly more for smaller word sizes. In 

particular, it is suitable for low-power designs such as 

wireless communication and digital-camera 

applications. 

A hybrid CSA tree for merged arithmetic 

architecture of FIR Filter has been proposed in [22]. 

The Dadda strategy uses less hardware cost but may 

result in a longer CPA and more reduction stages than 

Wallace. On the other hand, the Wallace strategy uses 

more hardware cost and shorter CPA. The hybrid tree 

reduction scheme is a combination of the Wallace 

strategy and the Dadda strategy. The merged 

operation block in FIR filters is portioned into two 

sub-blocks. The Wallace and Dadda strategy is 

applied on each sub-block independently. As shown 

in Fig. 8(a), the Wallace strategy is applied to the 

right sub-block of the arrow, the Dadda strategy is 

applied to the left sub-block of the arrow. For the 

right sub-block, the purpose is to reduce each column 

to a single-bit output. This leads a shorter CPA which 

equals the result if only the Wallace strategy is 

applied (see Fig. 8(b)) and with a small amount of 

hardware in excess to that required by the Dadda tree 

structure. Thus, the partition line, i.e. the boundary 

the arrow points, must be known before the 

computation. The partition line is found by the output 

of the Wallace tree for the given block in advance. 

Taking the Fig. 8(b) for explanation, the output of the 

Wallace tree has four consecutive single-bit columns 

at the least significant columns so that the partition 

line is decided at the left of these columns. 

However, in some cases, the Dadda structure 

yields one extra-stage than the Wallace structure. The 

combination of both structures of the left sub-block is 

preferred in order to maintain the same latency as the 

Wallace structure. 

2.4 Fixed-Point Number System 

This work focuses on the fixed-point number 

system. In [13], fixed-point arithmetic is usually used 

when hardware cost and speed is limited. Specialized 

DSP systems typically use fixed-point number 

representation for lower cost and greater speed. For 

basic signal processing computations such as digital 

filters and FFTs can be implemented in fixed-point 

representation with good performance. However, 

finite-precision quantization issue must be noticed 

carefully because fixed-point system offers the 

limited range and/or precision representation. 

An n-bit fixed-point number k can be 

partitioned into three parts, one sign bit, p-bit integer 

part and (n−p−1)-bit fractional part. The sign bit is set 

to zero when k is positive, and is set to one when k is 

negative. The value for k = {kn-1kn-2…k0} is expressed 

as 

−2pkn−1 + 
n–2

Σ
i=0

2i–n+p+1. (2) 

When multiplying two fixed-point n-bit 

numbers, the computational result would be 2n-bit 

width which should be still n-bit number in some 

fixed-point system actuality. The least significant 

n−p−1 bits and the most significant p+1 bits should 

be cancelled out because the 2n-bit result is out of the 

range that can be properly represented in the given 

data size. Thus, the overflow error and the truncation 

error will be inevitable. The overflow error must be 

carefully handled since it will make the result 

incorrect. The suitable truncation approach must be 

made up for the errors through truncating. 



3 Our Result 

In [9] and [20], merged arithmetic has been 

proposed to speed up the inner product with lower 

gate counts and reduction stages. In [22], a hybrid 

CSA tree has been proposed to shorten the width of 

the final CPA. Notably, their results are only 

compared to conventional designs. It is helpless for 

users who want to design such systems with different 

considerations. This work tries to find the most 

suitable merging approach according to the user’s 

desired demand. Moreover, the hardware 

interconnection is also outputted for further 

implementation. Finally, this work also shows how to 

construct the improved matrix multiplier by utilizing 

such merged inner product. 

In this section, the word length is denoted by N 

and the vector size is denoted by M. Our simulation 

inputs take N from 2 to 64 and M from 1 to 16. The 

outputs are the results of N-bit M-term merged inner 

product. The results of the simulation include the 

delay, cost, delay × cost and the hardware 

interconnection. 

3.1 The Estimation Method 

In this work, three metrics are used for our 

simulation result. The time delay, gate count cost and 

delay × cost are adopted in general. To estimate these 

three metrics, a widely accepted approach is 

described in the following. This method takes any 

monotonic gate (e.g. AND, NOR, etc.) has one gate 

delay and cost excluding the XOR gate which has 

two gate delays and costs. Any multi-input gate is 

transformed to a series of multiple 2-input monotonic 

gates for evaluation. For example, a four-input OR is 

transformed into using three 2-input OR gates. The 

delays and costs of some arithmetic blocks are given 

in Table 2 which will be used latter. In our estimation 

method, CLA is constructed with 2-bit lookahead 

blocks where n denotes the input data width of CLA 

and the estimation is penalizing by using two input 

gates. 

3.2 Simulation Results of the Previous Approaches 

In [9], the Dadda tree with fast reduction is 

applied for the fully merged arithmetic. According to 

our simulation results, the values of the Dadda tree 

with fast reduction are chiefly the same as those of 

the Dadda tree without fast reduction excepting some 

cases. Take a more look on these different cases, the 

delay and cost of the Dadda tree with fast reduction 

has saved at most one FA delay and 12 costs than 

without fast reduction respectively. In brief, the 

Dadda tree with fast reduction isn’t worst than 

without fast reduction for the delay and cost metrics. 

This work also compares the delay and cost 

between the Wallace tree and the Dadda tree with fast 

reduction in our simulation. The result shows that the 

delay of the Wallace tree is smaller than or equal to 

the Dadda tree with fast reduction in most cases and 

the former saves one FA delay or one HA delay than 

the latter. There are still few cases (i.e. 11 cases) 

where the delay of the Wallace tree is greater than the 

Dadda tree with fast reduction and the former spends 

one HA delay than the latter. However, the cost of the 

Dadda tree with fast reduction is smaller than or 

equal to the Wallace tree in most cases and the 

difference between them is increasing as the N or M 

increases approximately. For example, the difference 

in cost is 168 when N = 16 and M = 2 and is 472 

when N = 32 and M = 2. There are few cases where 

the cost of the Dadda tree with fast reduction is 

greater than the Wallace tree, but the difference is 

small (i.e. the largest difference is 19). On the whole, 

the simulation results reveal the similar situation 

which has been discussed in Subsection 2.1. 

In [22], the hybrid CSA strategy is applied for 



reduction process followed by a CPA. In high 

performance design, however, the Carry Lookahead 

Adder (CLA) is usually used to achieve high speed 

instead of CPA. It has not shown us that if a CLA is 

applied for final addition after reducing the partial 

product matrix to two vectors instead of a single-bit 

output at the least significant columns. This inspires 

us to do more simulation for comparing. The 

combination of the Wallace reduction stages and the 

Dadda reduction stages is also presented to make the 

total reduction stages as the Wallace-structured in 

[22]. Therefore, more explicit combinations are 

simulated to realize its affect. For the user’s demands 

are not the same all the time, applying fixed strategy 

in all designs is inadvisable. Hence, more work must 

be taken subsequently. 

3.3 The Reduction Methods on Demand 

As mentioned in Section 2, the former 

reduction approaches include the Dadda strategy with 

and without fast reduction, the Wallace strategy, and 

the hybrid CSA tree. Based on the strategies 

mentioned above, we attempt to do some simulation 

which has not been done yet. The stages of the 

Wallace tree and the Dadda tree with fast reduction 

are combined with all possible combinations. This 

combined strategy is to apply the Wallace strategy 

first and the Dadda strategy with fast reduction later. 

One of the extreme cases is the pure Wallace tree and 

the other is the pure Dadda tree with fast reduction. 

The combined strategy is also applied to understand 

the affect of the hybrid CSA tree. This will be 

explained carefully later. After reducing partial 

product matrix to two vectors, a CLA with 2-bit 

lookahead generator is used for the final addition. 

One of the reduction methods is denoted by 

D(ω, F.D.), where ω is the number of reduction 

stages by using the Wallace tree only and F.D. means 

the Dadda tree with fast reduction. In the reduction 

with D(ω, F.D.), first apply the Wallace strategy for ω 

stages and then apply the Dadda strategy with fast 

reduction until two vectors left. When ω is zero, the 

combined method is a pure Dadda tree with fast 

reduction. On the other hand, the combined method is 

a pure Wallace tree if ω equals the number of stages 

needed in the Wallace-structured reduction. The 

number of stages needed in the Wallace-structured 

reduction is denoted by ωmax in this paper. 

Another combined method is denoted by H(ω, 

F.D.), where ω and F.D. are the same meaning with 

D(ω, F.D.) but are only applied on the left part of the 

arrow (see Subsection 2.3). In the reduction with H(ω, 

F.D.), first apply the Wallace strategy for ω stages 

and apply the Dadda strategy with fast reduction on 

the left part of the arrow. When ω is zero, the right 

part of the arrow is a pure Wallace tree and the left 

part of the arrow is a pure Dadda tree with fast 

reduction. The reduction tree is a traditional Wallace 

tree with single-bit output at the least significant 

columns if ω equals to ωmax. 

All reduction approaches for the merged 

arithmetic architecture are listed in the following. 

1. Applying the Wallace strategy to reduce partial 

product matrix to two vectors left. (D(ωmax, F.D.)) 

2. Applying the Dadda strategy with fast reduction 

to reduce partial product matrix to two vectors left. 

(D(0, F.D.)) 

3. Applying the combined method D(ω, F.D.) to 

reduce partial product matrix to two vectors left. 

4. Applying the Wallace strategy to reduce partial 

product matrix to single-bit output at least 

significant columns. (H(ωmax, F.D.)) 

5. Applying the Wallace strategy to reduce partial 

product matrix in the right part of the arrow (in 

[22]) and applying the Dadda strategy with fast 

reduction in the left part. (H(0, F.D.)) 



6. Applying the Wallace strategy to the right part of 

the arrow (in [22]) and applying the third 

approach to the left part of the arrow. (H(ω, F.D.)) 

After applying any of the above methods, the 

CLA with 2-bit lookahead generator is used for final 

two vectors addition. The items listed above reveal 

that these two reduction methods including the 

former approaches which are discussed in Section 2 

and the new combined approaches which have not 

been tried yet. The affect of the hybrid CSA tree can 

be understood by comparing D(ω, F.D.) and H(ω, 

F.D.). 

Fig. 9 shows the flow of our simulation 

program. First, N, M and D (user’s demand) are 

assigned. Recall that the ωmax must be obtained before 

performing the functions F1 and F2. Two ωmaxs 

outputted from the functions Wallace1 and Wallace2 

have the unequal meaning. The function Wallace1 

results two vectors (carry and sum vectors) but the 

function Wallace2 results single vector at the least 

significant bits instead of two vectors. By the way, 

the combined methods can be well computed for a 

reasonable ω. Next, we can perform the combined 

methods and save the results. Finally, all saved results 

from function F1 and F2 are compared. 

For the user’s demand is changeable, we offer 

the best result depending on the user’s demand. When 

the N and M are given, we will output the best 

approach according to the designate demand. It’s 

helpful for the users who want to design such systems 

because the simulation result obtained in Subsection 

3.2 shows that none of them is always better than 

others and some of them are not done. Our results are 

shown in the next section. 

3.4 Our Simulation 

About three metrics in our simulation, the delay 

demand is denoted by 1, the cost demand is denoted 

by 2 and the delay × cost demand is denoted by 3. 

For N=8, M=4, the H(1, F.D.) is the best approach on 

delay × cost demand as illustrated in Fig. 10. If the 

delay demand is selected, the H(1, F.D.) will be 

outputted at the bottom line. The H(0, F.D.) will not 

be outputted because its cost is not the lowest among 

all H(ω, F.D.) and D(ω, F.D.) with the same delay. 

Identically, the H(1, F.D.) will be outputted at bottom 

line if the cost demand is selected. The delay values 

in Fig. 10 exclude the delay of generating partial 

product matrix and so do the cost values. Those 

values can be ignored because both of them are fixed 

values as N and M unchangeable and are necessarily 

included in any combined approach. 

The hardware interconnection of H(1, F.D.) is 

also shown in Fig. 11. Each line behalves a reduction 

stage of the H(1, F.D.), the order of each row is the 

stage order in reduction process. The figure fingers 

out that it requires eight stages to finish the reduction. 

The delay of each stage is a FA delay or a HA delay 

relying on the usage. The right columns of each row 

are the least significant columns. In each pair 

parentheses (x, y) at i-th row, x means the number of 

FAs which are used in stage i and y means the 

number of HAs which are used in stage i. The (0, 0) 

indicates that neither FAs nor HAs are used for the 

reduction. The hardware interconnections of CLAs 

are not shown in Fig. 11. 

This work also makes efforts to realize the 

optimization of the proposed combined methods. 

Furthermore, we want to know that the best method 

for delay demand is equivalent to the best method for 

cost demand or not. As the demand is delay, the 

outputted delay and cost are denoted by 

MIN_DELAY and COST respectively. As the 

demand is cost, the outputted delay and cost are 

denoted by DELAY and MIN_COST respectively. 

One of the simulation results is on the viewpoint of 



DELAY minus MIN_DELAY and another is on 

COST minus MIN_COST. In most cases of both 

viewpoints, the difference value is zero. It means that 

the combined method outputted by our program 

results in the most optimal method. Nevertheless, 

there are few cases that the difference value is 

non-zero. It is impossible to get the most optimal 

method because the delay demand and cost demand 

are the trade-off problem in such cases. Minimizing 

one of them will maximize the other. Besides, the 

non-zero values are in the range of the Wallace tree 

and the Dadda tree with fast reduction. 

3.5 Improved Matrix Multiplier 

The proposed matrix multiplier is based on the 

merged arithmetic approach mentioned in Subsection 

3.3. The traditional multipliers and accumulators are 

dissolved and merged into a block to perform 

inner-product operation. Because the matrix 

multiplication has a large of inner-product operations 

indeed, the matrix multiplier can be improved by 

utilizing suitable merging approach. In brief, the 

improved matrix multiplier bases on the acceleration 

of the merged inner product function. One example 

of designing such kind of the matrix multiplier is 

described below. 

The architecture of the improved matrix 

multiplier (as shown in Fig. 12) is similar to the 

architecture proposed by Huang and Duh [12]. The 

structure of an array processor includes a control unit 

(CU), a control unit memory (CUM), processor 

elements (PEs), processor element memories (PEMs), 

and the communication network. CU is dedicated to 

process program. It fetches instructions from CUM 

and passes data to PEMs for PEs. The data transfer 

between PEMs is through the communication 

network. However, each PE in our design has merged 

M multiplications and M−1 additions into one merged 

computing block and has PEMs for storing operands 

and results. In addition, the width of each bus is M×N 

bits. The circuit of the computing block is got from 

the simulation result of Subsection 3.3 according to 

the given demand. Data on each X bus or Y bus can 

be simultaneously shard by M processor elements; 

and every processor among these M processors can 

be outgoing data. The data on the Xi bus, ai0, ai1, ai2, 

ai3,…, ai(M-1) can be simultaneously used by 

processors PEi,0,…, PEi,M-1; and the data on the Yj bus, 

b0j, b1j, b2j, b3j,…, b(M-1)j, can be simultaneously used 

by processors PE0,j ,…, PEM-1,j. Therefore, 

multiplying two M×M matrices exists no time delay 

for data transfer. 

4 Concluding Remarks 

The matrix multiplier is widely used in many 

scientific computations. Due to the enormous power 

and time spend in matrix multiplication, many efforts 

are done to achieve high performance. In general, a 

parallel processing architecture is often adopted for 

speeding up. Besides the parallel computing on 

matrix multiplier, merged arithmetic has been 

proposed to speed up inner product with lower cost 

and delay. In the bit-level design, individual bits of a 

word can be parallel processed. Thus, it is desirable 

when very high performance is needed. 

This work concentrates on the inner product 

operations because the basic operations of matrix 

multiplication comprise a large of inner products. The 

partial product reduction of the merged inner product 

is performed by using fast tree strategies such as the 

Wallace tree, the Dadda tree with and without fast 

reduction and the CSA hybrid tree. In this work, a 

combined strategy is proposed to find the best 

reduction approach according to user’s demand. This 

combined method includes the former methods and 

some combined methods which have not been done 



before. Moreover, when N and M are given (the word 

length is denoted by N and the vector size is denoted 

by M), the time delay, hardware cost and 

multiplication of both are given in the simulation 

result. Besides three metrics are outputted, the 

corresponding hardware interconnection is also 

outputted for further implementation. 

In this study, fixed-point matrix multiplier is 

discussed. For considering the high precision and 

large range of data in some applications, 

floating-point representation is more suitable than 

fixed-point representation. But the hardware 

resources and the execution time used to perform 

floating-point operations are greater than fixed-point 

operations very much. The design of efficient 

floating-point hardware is a difficulty challenge. This 

leads the floating-point hardware in an expensive 

choice. How to accelerate floating-point matrix 

multiplier by applying merged arithmetic is what we 

concern in the future. 

Some rough ideas are presented in the 

following. For accelerating the floating-point 

multiplication, the merged arithmetic can be applied 

to the multiplication of two significands. For addition 

of multiple floating-point numbers, all of the numbers 

can be merged to one time addition. For dealing with 

the floating-point inner product, take two-term inner 

product as an example. The exponential computation 

includes two additions and one subtraction that can 

be merged to perform at once. The individual product 

of each term may not be available in fact and the 

CSA tree can be applied to the partial product matrix 

to reduce it to two rows left. This leads one time 

carry-propagate saving. Finally, sum up these four 

rows altogether under the correct shift of each 

exponent. 
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Fig. 1.  Unsigned 4×4 multiplication (a) in binary number and (b) in dot notation. 

 



 

 (a) (b) 

Fig. 2.  The reduction trees. (a) The Wallace tree. (b) The Dadda tree. 

 

Table 1  The Maximum Number of Operands n(h) for an h-Level Carry-Save-Adder Tree 

Number of operands (n(h)) Number of stages (h)

2 0

3 1

4 2

6 3

9 4

13 5

19 6

28 7

42 8

63 9

94 10
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(b) 

Fig. 3.  2’s complement multiplier. (a) 2’s Complement Multiplier. (b) Modified Baugh-Wooley Method. 
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 (a) (b) 

Fig. 4.  Merged arithmetic. (a) Traditional inner product. (b) Merged inner product. 

 

 

Fig. 5.  The Dadda tree with fast reduction. 
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Fig. 6.  Partially merged arithmetic. 

 

 

Fig. 7.  The composite bit product matrix for merged 2’s complement two-term inner product. 

 
 (a) (b) 

Fig. 8.  CSA tree reductions in [22]. (a) CSA tree reduction with hybrid structure. (b) CSA tree reduction 

applying Wallace’s strategy. 



Table 2  Delay and Cost of Some Arithmetic Blocks 

 Delay Cost 

Half-adder (HA) 2 3 

Full-adder (FA) 4 7 
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Fig. 9.  The flow of our simulation program. 



 

Fig. 10.  Simulation result for N=8 and M=4. 

 

 
Fig. 11.  The hardware interconnection of H(1, F.D.) for N=8 and M=4. 

 

 
Fig. 12.  The architecture of the proposed matrix multiplier. 


